我使用以下方法生成最多4位数的验证码:
def genData(n=30000, max_digs=4, width=150):
capgen = ImageCaptcha()
data = []
target = []
for i in range(n):
x = np.random.randint(0, 10 ** max_digs)
img = misc.imread(capgen.generate(str(x)))
img = np.mean(img, axis=2)[:, :width]
data.append(img.flatten())
target.append(x)
return np.array(data), np.array(target)
然后我正在处理如下数据
train_data, train_target = genData()
test_data, test_target = genData(1000)
train_data = train_data.reshape(train_data.shape[0], 1, 150, 60)
test_data = test_data.reshape(test_data.shape[0], 1, 150, 60)
train_data = train_data.astype('float32')
test_data = test_data.astype('float32')
train_data /= 255
test_data /= 255
我的模型结构如下:
def get_model():
# create model
model = Sequential()
model.add(Conv2D(30, (5, 5), input_shape=(1, 150, 60), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(15, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.2))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dense(50, activation='relu'))
model.add(Dense(10 ** 4, activation='softmax'))
# Compile model
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
return model
然后我训练模型
model = get_model()
# Fit the model
model.fit(train_data, train_target, validation_data=(test_data, test_target), epochs=10, batch_size=200)
# Final evaluation of the model
scores = model.evaluate(test_data, test_target, verbose=0)
print("Large CNN Error: %.2f%%" % (100 - scores[1] * 100))
我不知道自己在哪部分做错了,但是我的准确性甚至达不到%1。
最佳答案
您有10000(!)类。你要训练多久?每个课程有多少培训数据?
您的方法几乎可以肯定是问题所在。尽管您可以用这种方法解决“蛮力”问题,但这是一种非常糟糕的方法。您应该首先尝试检测单个数字,然后使用10类分类器对每个数字进行分类。
关于python - 验证码识别精度低,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/43954712/