我正在使用 python、NLTK 和 WordNetLemmatizer 开发 lemmatizer。
这是一个随机文本,输出我所期望的
from nltk.stem import WordNetLemmatizer
from nltk.corpus import wordnet
lem = WordNetLemmatizer()
lem.lemmatize('worse', pos=wordnet.ADJ) // here, we are specifying that 'worse' is an adjective
输出:
'bad'
lem.lemmatize('worse', pos=wordnet.ADV) // here, we are specifying that 'worse' is an adverb
输出:
'worse'
嗯,这里一切都很好。行为与其他形容词相同,如
'better'
(用于不规则形式)或 'older'
(注意,与 'elder'
相同的测试永远不会输出 'old'
,但我猜 wordnet 不是所有现有英语单词的详尽列表)尝试使用
'furter'
一词时,我的问题出现了:lem.lemmatize('further', pos=wordnet.ADJ) // as an adjective
输出:
'further'
lem.lemmatize('further', pos=wordnet.ADV) // as an adverb
输出:
'far'
这与
'worse'
字的行为完全相反!谁能解释我为什么?它是来自 wordnet 同义词集数据的错误还是来自我对英语语法的误解?
如果问题已经得到解答,请原谅我,我已经在 google 和 SO 上搜索过,但是当指定关键字“进一步”时,由于这个词的流行,我可以找到任何相关但困惑的东西......
先感谢您,
罗曼 G。
最佳答案
WordNetLemmatizer
使用 ._morphy
函数访问其词的引理;从 http://www.nltk.org/_modules/nltk/stem/wordnet.html 并返回具有最小长度的可能引理。
def lemmatize(self, word, pos=NOUN):
lemmas = wordnet._morphy(word, pos)
return min(lemmas, key=len) if lemmas else word
._morphy
函数迭代地应用规则以获得引理;规则不断减少单词的长度并用 MORPHOLOGICAL_SUBSTITUTIONS
替换词缀。然后它查看是否还有其他更短但与缩减词相同的词:def _morphy(self, form, pos):
# from jordanbg:
# Given an original string x
# 1. Apply rules once to the input to get y1, y2, y3, etc.
# 2. Return all that are in the database
# 3. If there are no matches, keep applying rules until you either
# find a match or you can't go any further
exceptions = self._exception_map[pos]
substitutions = self.MORPHOLOGICAL_SUBSTITUTIONS[pos]
def apply_rules(forms):
return [form[:-len(old)] + new
for form in forms
for old, new in substitutions
if form.endswith(old)]
def filter_forms(forms):
result = []
seen = set()
for form in forms:
if form in self._lemma_pos_offset_map:
if pos in self._lemma_pos_offset_map[form]:
if form not in seen:
result.append(form)
seen.add(form)
return result
# 0. Check the exception lists
if form in exceptions:
return filter_forms([form] + exceptions[form])
# 1. Apply rules once to the input to get y1, y2, y3, etc.
forms = apply_rules([form])
# 2. Return all that are in the database (and check the original too)
results = filter_forms([form] + forms)
if results:
return results
# 3. If there are no matches, keep applying rules until we find a match
while forms:
forms = apply_rules(forms)
results = filter_forms(forms)
if results:
return results
# Return an empty list if we can't find anything
return []
但是,如果单词在异常列表中,它将返回一个固定值保存在
exceptions
中,请参阅 http://www.nltk.org/_modules/nltk/corpus/reader/wordnet.html 中的 _load_exception_map
:def _load_exception_map(self):
# load the exception file data into memory
for pos, suffix in self._FILEMAP.items():
self._exception_map[pos] = {}
for line in self.open('%s.exc' % suffix):
terms = line.split()
self._exception_map[pos][terms[0]] = terms[1:]
self._exception_map[ADJ_SAT] = self._exception_map[ADJ]
回到你的例子,
worse
-> bad
和 further
-> far
不能从规则中实现,因此它必须来自异常(exception)列表。既然是异常(exception) list ,肯定会有不一致的地方。异常列表保存在
~/nltk_data/corpora/wordnet/adv.exc
和 ~/nltk_data/corpora/wordnet/adv.exc
中。从
adv.exc
:best well
better well
deeper deeply
farther far
further far
harder hard
hardest hard
从
adj.exc
:...
worldliest worldly
wormier wormy
wormiest wormy
worse bad
worst bad
worthier worthy
worthiest worthy
wrier wry
...
关于Python NLTK 使用 wordnet 对 'further' 一词进行词形还原,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/22999273/