给定具有以下格式的数据框:
TEST_ID | ATOMIC_NUMBER | COMPOSITION_PERCENT | POSITION
1 | 28 | 49.84 | 0
1 | 22 | 50.01 | 0
1 | 47 | 0.06 | 1
2 | 22 | 49.84 | 0
2 | 47 | 50.01 | 1
3 | 28 | 49.84 | 0
3 | 22 | 50.01 | 0
3 | 47 | 0.06 | 0
我只想选择POSITION 0中ATOMIC_NUMBER为22 AND 28的测试,不多不少。所以我想要一个返回的过滤器:
TEST_ID | ATOMIC_NUMBER | COMPOSITION_PERCENT | POSITION
1 | 28 | 49.84 | 0
1 | 22 | 50.01 | 0
1 | 47 | 0.06 | 1
编辑:我正在尝试将此逻辑从SQL转换为python。这是SQL代码:
select * from compositions
where compositions.test_id in (
select a.test_id from (
select test_id from compositions
where test_id in (
select test_id from (
select * from COMPOSITIONS where position == 0 )
group by test_id
having count(test_id) = 2 )
and atomic_number = 22) a
join (
select test_id from compositions
where test_id in (
select test_id from (
select * from COMPOSITIONS where position == 0 )
group by test_id
having count(test_id) = 2 )
and atomic_number = 28) b
on a.test_id = b.test_id )
最佳答案
您可以创建一个布尔序列来捕获test_id,然后使用该序列对df进行索引。
s = df[df['POSITION'] == 0].groupby('TEST_ID').apply(lambda x: ((x['ATOMIC_NUMBER'].count() == 2 ) & (sorted(x['ATOMIC_NUMBER'].values.tolist()) == [22,28])).all())
test_id = s[s].index.tolist()
df[df['TEST_ID'].isin(test_id)]
TEST_ID ATOMIC_NUMBER COMPOSITION_PERCENT POSITION
0 1 28 49.84 0
1 1 22 50.01 0
2 1 47 0.06 1
关于python - Pandas 数据框过滤多个列和行,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/52635026/