在2D平面中,我有一组由其nxn
坐标定义的(x,y)
点。对于每个点,我都希望将某些量绘制为3D曲面。如何为每个点分配图中的相关值?我问,因为我弄得一团糟。
我会更好地解释自己。我有:
平面中10x10=100
点的位置字典:dict1={0:(0, 0), 1:(0, 1), 2:(0, 2), ..., 99:(9,9)}
将与所述点相关联的值的字典:dict2=OrderedDict([(0, 369670), (1, 370622), (2, 267034), ..., (99, 217500)])
dict1
和dict2
的合并,其中每个值都与正确的点相关联,每个点均基于其坐标进行标记:merged_dict={dict1[k]: v for k, v in dict2.items()}
merged_dict={(0,0):369670, (0,1):370622, (0,2):267034, ..., (9,9): 217500}
预期的3D图的点坐标为来自merged_dict
的X和Y和Z。这是我的尝试:
#3D plot
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
fig = plt.figure()
ax = fig.gca(projection='3d')
inds=[(0, 0), (0, 1), (0, 2), ..., (9,9)] #The coordinates of each point -> len(inds)=100
X=[]
for k in range(len(inds)):
X.append(int(inds[k][0]))
Y=X
X, Y = np.meshgrid(X, Y)
merged_dict = {dict1[k]: v for k, v in dict2.items()}
Z = merged_dict.values()
surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.winter, linewidth=0, antialiased=True)
ax.set_zlim(0, 900000)
ax.zaxis.set_major_locator(LinearLocator(10))
ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))
plt.show()
我得到的情节是错误的,因为它具有混乱的表面。预期的结果是在点(4,4),(5,4),(4,5),(5,5)对应的对称钟形表面峰值超过800,000。相反,结果使我认为Z值未与相关的X,Y坐标正确关联。如何解决这个问题?
编辑
这些是涉及的实际数据:
In[1]: merged_dict
Out[1]:
{(0, 0): 369670,
(0, 1): 370622,
(0, 2): 267034,
(0, 3): 169500,
(0, 4): 116014,
(0, 5): 116014,
(0, 6): 169500,
(0, 7): 267034,
(0, 8): 370622,
(0, 9): 369670,
(1, 0): 370622,
(1, 1): 491950,
(1, 2): 456750,
(1, 3): 370180,
(1, 4): 308118,
(1, 5): 308118,
(1, 6): 370180,
(1, 7): 456750,
(1, 8): 491950,
(1, 9): 370622,
(2, 0): 267034,
(2, 1): 456750,
(2, 2): 542718,
(2, 3): 554980,
(2, 4): 543588,
(2, 5): 543588,
(2, 6): 554980,
(2, 7): 542718,
(2, 8): 456750,
(2, 9): 267034,
(3, 0): 169500,
(3, 1): 370180,
(3, 2): 554980,
(3, 3): 689848,
(3, 4): 759272,
(3, 5): 759272,
(3, 6): 689848,
(3, 7): 554980,
(3, 8): 370180,
(3, 9): 169500,
(4, 0): 116014,
(4, 1): 308118,
(4, 2): 543588,
(4, 3): 759272,
(4, 4): 888268,
(4, 5): 888268,
(4, 6): 759272,
(4, 7): 543588,
(4, 8): 308118,
(4, 9): 116014,
(5, 0): 116014,
(5, 1): 308118,
(5, 2): 543588,
(5, 3): 759272,
(5, 4): 888268,
(5, 5): 888268,
(5, 6): 759272,
(5, 7): 543588,
(5, 8): 308118,
(5, 9): 116014,
(6, 0): 169500,
(6, 1): 370180,
(6, 2): 554980,
(6, 3): 689848,
(6, 4): 759272,
(6, 5): 759272,
(6, 6): 689848,
(6, 7): 554980,
(6, 8): 370180,
(6, 9): 169500,
(7, 0): 267034,
(7, 1): 456750,
(7, 2): 542718,
(7, 3): 554980,
(7, 4): 543588,
(7, 5): 543588,
(7, 6): 554980,
(7, 7): 542718,
(7, 8): 456750,
(7, 9): 267034,
(8, 0): 370622,
(8, 1): 491950,
(8, 2): 456750,
(8, 3): 370180,
(8, 4): 308118,
(8, 5): 308118,
(8, 6): 370180,
(8, 7): 456750,
(8, 8): 491950,
(8, 9): 370622,
(9, 0): 369670,
(9, 1): 370622,
(9, 2): 267034,
(9, 3): 169500,
(9, 4): 116014,
(9, 5): 116014,
(9, 6): 169500,
(9, 7): 267034,
(9, 8): 370622,
(9, 9): 369670}
最佳答案
我猜在Y=X
行中有问题。 X, Y
是列表。编写Y=X
时,表示Y
是对X
的引用。您需要进行复制,即:
Y = []
numpy.copy(Y,X)
测试此变体并写下会发生的情况。否则,发布merged_dict的数据以测试实值上的图。
更新:
看图,对吗?
数组
Z
必须是2d数组,但是在您的代码中是1d列表。import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
fig = plt.figure()
ax = fig.gca(projection='3d')
X = np.arange(0,10,1)
Y = np.arange(0,10,1)
X, Y = np.meshgrid(X, Y)
merged_dict = {(0, 0): 369670,
(0, 1): 370622,
(0, 2): 267034,
...
(9, 8): 370622,
(9, 9): 369670}
Z = np.array(merged_dict.values()).reshape(10,10)
surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.winter, linewidth=0, antialiased=True)
ax.set_zlim(0, 900000)
plt.show()
更新2:
发生问题是因为您将数据存储在dict中,但是dict未按索引排序。要将值加载到数组
Z
:Z = np.zeros((10,10))
for key in merged_dict:
i = key[0]
j = key[1]
Z[i][j] = int(merged_dict[key])
结果,您得到: