我正在寻找一种Richardson-Lucy反卷积算法的实现,该算法可用于一维数组,例如光谱数据。我尝试了scikit-image,但显然它仅适用于图像。
最佳答案
您是否尝试过在单行/单列二维数组上使用restoration.richardson_lucy
?它能按预期工作吗?
这是基于http://scikit-image.org/docs/dev/auto_examples/filters/plot_deconvolution.html的示例(请参见输入单元3和4):
In [1]: import numpy as np
...: import matplotlib.pyplot as plt
...:
...: from scipy.signal import convolve2d as conv2
...:
...: from skimage import color, data, restoration
...:
...: astro = color.rgb2gray(data.astronaut())
...:
In [2]:
...: psf = np.ones((5, 5)) / 25
...: astro = conv2(astro, psf, 'same')
...: # Add Noise to Image
...: astro_noisy = astro.copy()
...: astro_noisy += (np.random.poisson(lam=25, size=astro.shape) - 10) / 255.
...:
...:
In [3]: astro_1d = astro[:1, :]
In [4]: psf_1d = psf[:1, :] * 5
In [5]: deconvolved_RL = restoration.richardson_lucy(astro_1d, psf_1d, iteration
...: s=30)
...:
...:
In [8]: deconvolved_RL[0][:10]
Out[8]:
array([ 3.68349589e-06, 4.64232976e-03, 8.96492325e-01,
2.92227252e-01, 2.27669473e-01, 1.63909318e-01,
2.62231088e-01, 5.63304220e-01, 4.29589937e-01,
3.21857292e-01])
In [9]: astro_1d[0][:10]
Out[9]:
array([ 0.20156543, 0.25178911, 0.31006612, 0.29581576, 0.30208733,
0.32490093, 0.35101666, 0.36213184, 0.35174074, 0.318339 ])
如果您发现转换为2D确实很不方便,请随时在GitHub上提出问题。
关于python - 一维阵列的Richardson-Lucy反卷积,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/48440907/