考虑这个简单的例子
dataframe <- data_frame(x = c(1,2,3,4,5,6),
y = c(12,24,24,34,12,15))
> dataframe
# A tibble: 6 x 2
x y
<dbl> <dbl>
1 1 12
2 2 24
3 3 24
4 4 34
5 5 12
6 6 15
dataframe %>% ggplot(., aes(x = x, y = y)) +
geom_point() +
geom_smooth(method = 'lm', formula = y~x)
此处,标准误差是使用默认选项计算的。但是,我想使用软件包
sandwich
和lmtest
中可用的健壮方差-协方差矩阵也就是说,使用
vcovHC(mymodel, "HC3")
有没有一种方法可以使用
geom_smooth()
函数以简单的方式获得它?最佳答案
HC健壮的SE(简单)
现在,借助于estimatr包及其lm_robust
函数系列,可以轻松完成此操作。例如。
library(tidyverse)
library(estimatr)
dataframe <- data.frame(x = c(1,2,3,4,5,6),
y = c(12,24,24,34,12,15))
dataframe %>%
ggplot(aes(x = x, y = y)) +
geom_point() +
geom_smooth(method = 'lm_robust', formula = y~x, fill="#E41A1C") + ## Robust (HC) SEs
geom_smooth(method = 'lm', formula = y~x, col = "grey50") + ## Just for comparison
labs(
title = "Plotting HC robust SEs in ggplot2",
subtitle = "Regular SEs in grey for comparison"
) +
theme_minimal()
reprex package(v0.3.0)创建于2020-03-08
HAC强大的SE(更多的腿法)
一个警告是,估计does not仍然为Newey-West提供了HAC(即异方差和自相关一致)的支持。但是,可以通过三明治包装手动获取这些……这还是原始问题一直在问的那种。然后可以使用
geom_ribbon()
绘制它们。作为记录,我会说HAC SE对这个特定数据集没有多大意义。但是,这里有一个示例,说明如何在相关主题上给出this excellent SO答案。
library(tidyverse)
library(sandwich)
dataframe <- data.frame(x = c(1,2,3,4,5,6),
y = c(12,24,24,34,12,15))
reg1 <- lm(y~x, data = dataframe)
## Generate a prediction DF
pred_df <- data.frame(fit = predict(reg1))
## Get the design matrix
X_mat <- model.matrix(reg1)
## Get HAC VCOV matrix and calculate SEs
v_hac <- NeweyWest(reg1, prewhite = FALSE, adjust = TRUE) ## HAC VCOV (adjusted for small data sample)
#> Warning in meatHAC(x, order.by = order.by, prewhite = prewhite, weights =
#> weights, : more weights than observations, only first n used
var_fit_hac <- rowSums((X_mat %*% v_hac) * X_mat) ## Point-wise variance for predicted mean
se_fit_hac <- sqrt(var_fit_hac) ## SEs
## Add these to pred_df and calculate the 95% CI
pred_df <-
pred_df %>%
mutate(se_fit_hac = se_fit_hac) %>%
mutate(
lwr_hac = fit - qt(0.975, df=reg1$df.residual)*se_fit_hac,
upr_hac = fit + qt(0.975, df=reg1$df.residual)*se_fit_hac
)
pred_df
#> fit se_fit_hac lwr_hac upr_hac
#> 1 20.95238 4.250961 9.149822 32.75494
#> 2 20.63810 2.945392 12.460377 28.81581
#> 3 20.32381 1.986900 14.807291 25.84033
#> 4 20.00952 1.971797 14.534936 25.48411
#> 5 19.69524 2.914785 11.602497 27.78798
#> 6 19.38095 4.215654 7.676421 31.08548
## Plot it
bind_cols(
dataframe,
pred_df
) %>%
ggplot(aes(x = x, y = y, ymin=lwr_hac, ymax=upr_hac)) +
geom_point() +
geom_ribbon(fill="#E41A1C", alpha=0.3, col=NA) + ## Robust (HAC) SEs
geom_smooth(method = 'lm', formula = y~x, col = "grey50") + ## Just for comparison
labs(
title = "Plotting HAC SEs in ggplot2",
subtitle = "Regular SEs in grey for comparison",
caption = "Note: Do HAC SEs make sense for this dataset? Definitely not!"
) +
theme_minimal()
reprex package(v0.3.0)创建于2020-03-08
请注意,如果您愿意,也可以使用此方法手动计算和绘制其他鲁棒的SE预测(例如HC1,HC2等)。您所需要做的就是使用相关的三明治估算器。例如,使用
vcovHC(reg1, type = "HC2")
代替NeweyWest(reg1, prewhite = FALSE, adjust = TRUE)
将为您提供与使用estimatr软件包的第一个示例相同的HC鲁棒CI。关于r - ggplot2:如何为geom_smooth中的预测获取鲁棒的置信区间?,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/45313482/