from sklearn.metrics import precision_score
precision_score(expected, predicted)
哪里是
array([ 4., 3.])
并且预测为
array([ 2., 4.])
我明白了。错误:
*** ValueError: pos_label=1 is not a valid label: array([ 2., 3., 4.])
如何解决?
最佳答案
您需要average
参数用于多类标签。
否则,您需要将pos_label
设置为两个数组中的类标签之一,即2、3或4:
>>> # score for all classes
>>> precision_score(expected, predicted, average=None)
array([ 0., 0., 0.])
>>> # score for each class
>>> precision_score(expected, predicted, pos_label=2)
0.0
>>> precision_score(expected, predicted, pos_label=3)
0.0
>>> precision_score(expected, predicted, pos_label=4)
0.0
参考:
sklearn.metrics.precision_score
关于python - 使用scikit-learn计算精度时出现ValueError,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/39820260/