我想合并2个数据框:
df1:
cik0 cik1 cik2
'MKTG, INC.' 0001019056 None None
1 800 FLOWERS COM INC 0001104659 0001437749 None
11 GOOD ENERGY INC 0000930413 None None
1347 CAPITAL CORP 0001144204 None None
1347 PROPERTY INSURANCE HOLDINGS, INC. 0001387131 None None
df2:
cik Ticker
0 0001144204 AABB
1 0001019056 A
2 0001387131 AABC
3 0001437749 AA
4 0000930413 AAACU
预期结果:
cik0 cik1 cik2 ticker
'MKTG, INC.' 0001019056 None None A
1 800 FLOWERS COM INC 0001104659 0001437749 None AA
11 GOOD ENERGY INC 0000930413 None None AAACU
1347 CAPITAL CORP 0001144204 None None AABB
1347 PROPERTY INSURANCE HOLDINGS, INC. 0001387131 None None AABC
我想将
cik0
与df2['cik']
匹配,如果不起作用,我想看看
cik1
,依此类推。谢谢你的帮助!
最佳答案
您可以将 pd.Series.map
和 fillna
一起使用几次:
ticker_map = df2.set_index('cik')['Ticker']
df1['ticker'] = df1['cik0'].map(ticker_map)\
.fillna(df1['cik1'].map(ticker_map))\
.fillna(df1['cik2'].map(ticker_map))
但是,这有点乏味。您可以定义一个函数来迭代执行此操作:
def apply_map_on_cols(df, cols, mapper):
s = df[cols[0]].map(mapper)
for col in cols[1:]:
s = s.fillna(df[col].map(mapper))
return s
df1['ticker'] = df.pipe(apply_map_on_cols,
cols=[f'cik{i}' for i in range(3)],
mapper=df2.set_index('cik')['Ticker'])
关于python - 合并到一列或另一列,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/54310497/