我尝试实现基于https://stackoverflow.com/a/950173/7558038的图类。添加边缘时,我返回添加的边缘的边缘描述符,但是如果边缘已经存在,则不应添加。那我该还什么呢?不幸的是,null_edge()不存在(与null_vertex()不同)。可能是带有适当边缘迭代器类型std::pair<e_it_t,bool>e_it_t,但是如何使迭代器到达新边缘呢?

最佳答案

不要使用将近10年的类(class)。它已经过时了。

据我所知,Bundled properties至少在2010年就加入了BGL。从根本上讲,没有什么比直接提升更为容易的了。

另一个怪异的特性是,在某种程度上只能在该图中插入互补边。这可能是您想要的,但不保证拥有完整的类(class)IMO。

实际上,拥有自定义类型会删除ADL,这会使事情变得更加繁琐,除非您进行相互添加操作(例如,out_edgesin_edges,这大概就是您最初想要的双向图;也许您实际上希望具有可迭代范围,而不是pair<iterator, iterator>,这需要您编写老式的for循环)。

现在我已经进行了一些热身,让我们演示一下:

使用过时的包装器类

链接包装器的用法如下:

struct VertexProperties { int i; };
struct EdgeProperties { double weight; };

int main() {
    using MyGraph = Graph<VertexProperties, EdgeProperties>;

    MyGraph g;

    VertexProperties vp;
    vp.i = 42;

    MyGraph::Vertex v1 = g.AddVertex(vp);

    g.properties(v1).i = 23;


    MyGraph::Vertex v2 = g.AddVertex(vp);
    g.properties(v2).i = 67;

    g.AddEdge(v1, v2, EdgeProperties{1.0}, EdgeProperties{0.0});

    for (auto vr = g.getVertices(); vr.first!=vr.second; ++vr.first) {
        auto& vp = g.properties(*vr.first);
        std::cout << "Vertex " << vp.i << "\n";

        for (auto er = g.getAdjacentVertices(*vr.first); er.first!=er.second; ++er.first) {
            auto  s  = *vr.first;
            auto  t = *er.first;
            // erm how to get edge properties now?

            std::cout << "Edge " << g.properties(s).i << " -> " << g.properties(t).i << " (weight?!?)\n";
        }
    }
}

哪些打印:
Vertex 23
Edge 23 -> 67 (weight?!?)
Vertex 67
Edge 67 -> 23 (weight?!?)

注意,我并没有完全解决获得边缘权重的问题(我们根本不容易从接口(interface)中获得边缘描述符)。
for循环使我们倒退至少6年。这几乎不是最严重的问题。大概,您需要图形来进行某些操作。假设您想要最小的切割或最短的路径。这意味着您要调用需要边缘权重的算法。看起来像这样:
// let's find a shortest path:
// build the vertex index map
boost::property_map<MyGraph::GraphContainer, vertex_properties_t>::const_type vpmap =
    boost::get(vertex_properties, g.getGraph());
// oops we need the id from it. No problem, it takes only rocket science:
struct GetId {
    int operator()(VertexProperties const& vp) const {
        return vp.i;
    }
};
GetId get_id;
boost::transform_value_property_map<GetId,
    boost::property_map<MyGraph::GraphContainer, vertex_properties_t>::const_type,
    int> id_map
        = boost::make_transform_value_property_map<int>(get_id, vpmap);

// build the weight map
boost::property_map<MyGraph::GraphContainer, edge_properties_t>::const_type epmap =
    boost::get(edge_properties, g.getGraph());
// oops we need the weight from it. No problem, it takes only rocket science:
struct GetWeight {
    double operator()(EdgeProperties const& ep) const {
        return ep.weight;
    }
};
GetWeight get_weight;
boost::transform_value_property_map<GetWeight,
    boost::property_map<MyGraph::GraphContainer, edge_properties_t>::const_type,
    double> weight_map
        = boost::make_transform_value_property_map<double>(get_weight, epmap);

// and now we "simply" use Dijkstra:
MyGraph::vertex_range_t vertices = g.getVertices();
//size_t n_vertices = g.getVertexCount();
MyGraph::Vertex source = *vertices.first;

std::map<MyGraph::Vertex, MyGraph::Vertex> predecessors;
std::map<MyGraph::Vertex, double> distance;

boost::dijkstra_shortest_paths(g.getGraph(), source,
        boost::predecessor_map(boost::make_assoc_property_map(predecessors))
        .distance_map(boost::make_assoc_property_map(distance))
        .weight_map(weight_map)
        .vertex_index_map(id_map));

这不是我的可用性想法。只是为了展示所有编译和运行:

Live On Coliru

在2行C++ 11中替换包装器

让我们用现代的BGL样式替换整个Graph类模板:
template <typename VertexProperties, typename EdgeProperties>
using Graph = adjacency_list<setS, listS, bidirectionalS, VertexProperties, EdgeProperties>;

真。这是一个可靠的替代品,我将立即进行演示。



相同的用例-创建和创建

它们仍然一样简单,或者实际上更简单。完整的代码从249行代码减少到只有57行:

Live On Coliru
#include <boost/graph/adjacency_list.hpp>

namespace MyLib {
    template <typename VertexProperties, typename EdgeProperties>
    using Graph = boost::adjacency_list<boost::setS, boost::listS, boost::bidirectionalS, VertexProperties, EdgeProperties>;
}

#include <boost/graph/dijkstra_shortest_paths.hpp>
#include <iostream>

struct VertexProperties { int i; };
struct EdgeProperties { double weight; };

int main() {
    using boost::make_iterator_range;
    using MyGraph = MyLib::Graph<VertexProperties, EdgeProperties>;

    MyGraph g;

    auto v1 = add_vertex({42}, g);
    auto v2 = add_vertex({42}, g);
    g[v1].i = 23;
    g[v2].i = 67;

    add_edge(v1, v2, EdgeProperties{ 1.0 }, g);
    add_edge(v2, v1, EdgeProperties{ 0.0 }, g);

    for (auto v : make_iterator_range(vertices(g))) {
        std::cout << "Vertex " << g[v].i << "\n";
    }

    for (auto e : make_iterator_range(boost::edges(g))) {
        auto s = source(e, g);
        auto t = target(e, g);

        std::cout << "Edge " << g[s].i << " -> " << g[t].i << " (weight = " << g[e].weight << ")\n";
    }

    // let's find a shortest path:
    auto id_map = get(&VertexProperties::i, g);
    auto weight_map = get(&EdgeProperties::weight, g);

    auto source = *vertices(g).first;

    using Vertex = MyGraph::vertex_descriptor;
    std::map<Vertex, Vertex> predecessors;
    std::map<Vertex, double> distance;
    std::map<Vertex, boost::default_color_type> colors;

    boost::dijkstra_shortest_paths(
            g, source,
            boost::vertex_color_map(boost::make_assoc_property_map(colors))
            .predecessor_map(boost::make_assoc_property_map(predecessors))
            .distance_map(boost::make_assoc_property_map(distance))
            .weight_map(weight_map)
            .vertex_index_map(id_map));
}

我会说
  • 更好。
  • 尽管不依赖using namespace boost(ADL是这里的关键),但它同样优雅
  • ,我们实际上打印了边缘权重!

  • 而且它可以更干净

    如果切换到具有隐式顶点索引的顶点容器选择器(例如vecS):

    Live On Coliru
    #include <boost/graph/adjacency_list.hpp>
    
    namespace MyLib {
        template <typename VertexProperties, typename EdgeProperties>
        using Graph = boost::adjacency_list<boost::setS, boost::vecS, boost::bidirectionalS, VertexProperties, EdgeProperties>;
    }
    
    #include <boost/graph/dijkstra_shortest_paths.hpp>
    #include <iostream>
    
    struct VertexProperties { int i; };
    struct EdgeProperties { double weight; };
    
    int main() {
        using boost::make_iterator_range;
        using MyGraph = MyLib::Graph<VertexProperties, EdgeProperties>;
    
        MyGraph g;
    
        add_vertex({23}, g);
        add_vertex({67}, g);
    
        add_edge(0, 1, EdgeProperties{ 1.0 }, g);
        add_edge(1, 0, EdgeProperties{ 0.0 }, g);
    
        for (auto v : make_iterator_range(vertices(g))) {
            std::cout << "Vertex " << g[v].i << "\n";
        }
    
        for (auto e : make_iterator_range(boost::edges(g))) {
            auto s = source(e, g);
            auto t = target(e, g);
    
            std::cout << "Edge " << g[s].i << " -> " << g[t].i << " (weight = " << g[e].weight << ")\n";
        }
    
        // let's find a shortest path:
        std::vector<size_t> predecessors(num_vertices(g));
        std::vector<double> distance(num_vertices(g));
    
        boost::dijkstra_shortest_paths(g, *vertices(g).first,
                boost::predecessor_map(predecessors.data()).distance_map(distance.data())
                .weight_map(get(&EdgeProperties::weight, g)));
    }
    

    输出:
    Vertex 23
    Vertex 67
    Edge 23 -> 67 (weight = 1)
    Edge 67 -> 23 (weight = 0)
    

    等待-不要忘记这个问题!

    我不会我认为上面显示的问题是an X/Y problem

    如果您没有自定义类包装的障碍,那么就可以检测到重复的边缘(有关背景,请参见if add_vertex in BGL checks for the existence of the vertex):
    struct { size_t from, to; double weight; } edge_data[] = {
        {0, 1, 1.0},
        {1, 0, 0.0},
        {0, 1, 99.999} // oops, a duplicate
    };
    for(auto request : edge_data) {
        auto addition = add_edge(request.from, request.to, { request.weight }, g);
        if (!addition.second) {
            auto& weight = g[addition.first].weight;
            std::cout << "Edge already existed, changing weight from " << weight << " to " << request.weight << "\n";
            weight = request.weight;
        }
    }
    

    这将打印 Live On Coliru :
    Edge already existed, changing weight from 1 to 99.999
    

    如果您愿意,您当然可以写得更有表现力:
    Graph::edge_descriptor e;
    bool inserted;
    boost::tie(e, inserted) = add_edge(request.from, request.to, { request.weight }, g);
    

    或者,具有一些c++ 17的才能:
    auto [e, inserted] = add_edge(request.from, request.to, { request.weight }, g);
    

    从这里更多

    另外,极有可能还需要在顶点上进行唯一性检查,因此最终得到图创建代码,如在此答案中可以看到的:Boost BGL BFS Find all unique paths from Source to Target
    Graph read_graph() {
        std::istringstream iss(R"(
            0 1 0.001
            0 2 0.1
            0 3 0.001
            1 5 0.001
            2 3 0.001
            3 4 0.1
            1 482 0.1
            482 635 0.001
            4 705 0.1
            705 5 0.1
            1 1491 0.01
            1 1727 0.01
            1 1765 0.01)");
    
        Graph g;
        std::map<int,Vertex> idx; // temporary lookup of existing vertices
    
        auto vertex = [&](int id) mutable {
            auto it = idx.find(id);
            if (it != idx.end())
                return it->second;
            return idx.emplace(id, add_vertex(id, g)).first->second;
        };
    
        for (std::string line; getline(iss, line);) {
            std::istringstream ls(line);
            int s,t; double w;
            if (ls >> s >> t >> w) {
                add_edge(vertex(s), vertex(t), w, g);
            } else {
                std::cerr << "Skipped invalid line '" << line << "'\n";
            }
        }
    
        return g;
    }
    

    其他示例显示如何在保持前后边缘之间的映射的同时插入a -> bb -> a:Accessing specific edges in boost::graph with integer index

    概要

    即将来临的时候,我建议您熟悉更新,更优雅的Boost Graph功能。最后,封装图形是完全正常的,最终可能会得到更优美的界面。

    09-07 06:34