我尝试实现基于https://stackoverflow.com/a/950173/7558038的图类。添加边缘时,我返回添加的边缘的边缘描述符,但是如果边缘已经存在,则不应添加。那我该还什么呢?不幸的是,null_edge()
不存在(与null_vertex()
不同)。可能是带有适当边缘迭代器类型std::pair<e_it_t,bool>
的e_it_t
,但是如何使迭代器到达新边缘呢?
最佳答案
不要使用将近10年的类(class)。它已经过时了。
据我所知,Bundled properties至少在2010年就加入了BGL。从根本上讲,没有什么比直接提升更为容易的了。
另一个怪异的特性是,在某种程度上只能在该图中插入互补边。这可能是您想要的,但不保证拥有完整的类(class)IMO。
实际上,拥有自定义类型会删除ADL,这会使事情变得更加繁琐,除非您进行相互添加操作(例如,out_edges
或in_edges
,这大概就是您最初想要的双向图;也许您实际上希望具有可迭代范围,而不是pair<iterator, iterator>
,这需要您编写老式的for循环)。
现在我已经进行了一些热身,让我们演示一下:
使用过时的包装器类
链接包装器的用法如下:
struct VertexProperties { int i; };
struct EdgeProperties { double weight; };
int main() {
using MyGraph = Graph<VertexProperties, EdgeProperties>;
MyGraph g;
VertexProperties vp;
vp.i = 42;
MyGraph::Vertex v1 = g.AddVertex(vp);
g.properties(v1).i = 23;
MyGraph::Vertex v2 = g.AddVertex(vp);
g.properties(v2).i = 67;
g.AddEdge(v1, v2, EdgeProperties{1.0}, EdgeProperties{0.0});
for (auto vr = g.getVertices(); vr.first!=vr.second; ++vr.first) {
auto& vp = g.properties(*vr.first);
std::cout << "Vertex " << vp.i << "\n";
for (auto er = g.getAdjacentVertices(*vr.first); er.first!=er.second; ++er.first) {
auto s = *vr.first;
auto t = *er.first;
// erm how to get edge properties now?
std::cout << "Edge " << g.properties(s).i << " -> " << g.properties(t).i << " (weight?!?)\n";
}
}
}
哪些打印:
Vertex 23
Edge 23 -> 67 (weight?!?)
Vertex 67
Edge 67 -> 23 (weight?!?)
注意,我并没有完全解决获得边缘权重的问题(我们根本不容易从接口(interface)中获得边缘描述符)。
for循环使我们倒退至少6年。这几乎不是最严重的问题。大概,您需要图形来进行某些操作。假设您想要最小的切割或最短的路径。这意味着您要调用需要边缘权重的算法。看起来像这样:
// let's find a shortest path:
// build the vertex index map
boost::property_map<MyGraph::GraphContainer, vertex_properties_t>::const_type vpmap =
boost::get(vertex_properties, g.getGraph());
// oops we need the id from it. No problem, it takes only rocket science:
struct GetId {
int operator()(VertexProperties const& vp) const {
return vp.i;
}
};
GetId get_id;
boost::transform_value_property_map<GetId,
boost::property_map<MyGraph::GraphContainer, vertex_properties_t>::const_type,
int> id_map
= boost::make_transform_value_property_map<int>(get_id, vpmap);
// build the weight map
boost::property_map<MyGraph::GraphContainer, edge_properties_t>::const_type epmap =
boost::get(edge_properties, g.getGraph());
// oops we need the weight from it. No problem, it takes only rocket science:
struct GetWeight {
double operator()(EdgeProperties const& ep) const {
return ep.weight;
}
};
GetWeight get_weight;
boost::transform_value_property_map<GetWeight,
boost::property_map<MyGraph::GraphContainer, edge_properties_t>::const_type,
double> weight_map
= boost::make_transform_value_property_map<double>(get_weight, epmap);
// and now we "simply" use Dijkstra:
MyGraph::vertex_range_t vertices = g.getVertices();
//size_t n_vertices = g.getVertexCount();
MyGraph::Vertex source = *vertices.first;
std::map<MyGraph::Vertex, MyGraph::Vertex> predecessors;
std::map<MyGraph::Vertex, double> distance;
boost::dijkstra_shortest_paths(g.getGraph(), source,
boost::predecessor_map(boost::make_assoc_property_map(predecessors))
.distance_map(boost::make_assoc_property_map(distance))
.weight_map(weight_map)
.vertex_index_map(id_map));
这不是我的可用性想法。只是为了展示所有编译和运行:
Live On Coliru
在2行C++ 11中替换包装器
让我们用现代的BGL样式替换整个Graph类模板:
template <typename VertexProperties, typename EdgeProperties>
using Graph = adjacency_list<setS, listS, bidirectionalS, VertexProperties, EdgeProperties>;
真。这是一个可靠的替代品,我将立即进行演示。
相同的用例-创建和创建
它们仍然一样简单,或者实际上更简单。完整的代码从249行代码减少到只有57行:
Live On Coliru
#include <boost/graph/adjacency_list.hpp>
namespace MyLib {
template <typename VertexProperties, typename EdgeProperties>
using Graph = boost::adjacency_list<boost::setS, boost::listS, boost::bidirectionalS, VertexProperties, EdgeProperties>;
}
#include <boost/graph/dijkstra_shortest_paths.hpp>
#include <iostream>
struct VertexProperties { int i; };
struct EdgeProperties { double weight; };
int main() {
using boost::make_iterator_range;
using MyGraph = MyLib::Graph<VertexProperties, EdgeProperties>;
MyGraph g;
auto v1 = add_vertex({42}, g);
auto v2 = add_vertex({42}, g);
g[v1].i = 23;
g[v2].i = 67;
add_edge(v1, v2, EdgeProperties{ 1.0 }, g);
add_edge(v2, v1, EdgeProperties{ 0.0 }, g);
for (auto v : make_iterator_range(vertices(g))) {
std::cout << "Vertex " << g[v].i << "\n";
}
for (auto e : make_iterator_range(boost::edges(g))) {
auto s = source(e, g);
auto t = target(e, g);
std::cout << "Edge " << g[s].i << " -> " << g[t].i << " (weight = " << g[e].weight << ")\n";
}
// let's find a shortest path:
auto id_map = get(&VertexProperties::i, g);
auto weight_map = get(&EdgeProperties::weight, g);
auto source = *vertices(g).first;
using Vertex = MyGraph::vertex_descriptor;
std::map<Vertex, Vertex> predecessors;
std::map<Vertex, double> distance;
std::map<Vertex, boost::default_color_type> colors;
boost::dijkstra_shortest_paths(
g, source,
boost::vertex_color_map(boost::make_assoc_property_map(colors))
.predecessor_map(boost::make_assoc_property_map(predecessors))
.distance_map(boost::make_assoc_property_map(distance))
.weight_map(weight_map)
.vertex_index_map(id_map));
}
我会说
using namespace boost
(ADL是这里的关键),但它同样优雅而且它可以更干净
如果切换到具有隐式顶点索引的顶点容器选择器(例如
vecS
):Live On Coliru
#include <boost/graph/adjacency_list.hpp>
namespace MyLib {
template <typename VertexProperties, typename EdgeProperties>
using Graph = boost::adjacency_list<boost::setS, boost::vecS, boost::bidirectionalS, VertexProperties, EdgeProperties>;
}
#include <boost/graph/dijkstra_shortest_paths.hpp>
#include <iostream>
struct VertexProperties { int i; };
struct EdgeProperties { double weight; };
int main() {
using boost::make_iterator_range;
using MyGraph = MyLib::Graph<VertexProperties, EdgeProperties>;
MyGraph g;
add_vertex({23}, g);
add_vertex({67}, g);
add_edge(0, 1, EdgeProperties{ 1.0 }, g);
add_edge(1, 0, EdgeProperties{ 0.0 }, g);
for (auto v : make_iterator_range(vertices(g))) {
std::cout << "Vertex " << g[v].i << "\n";
}
for (auto e : make_iterator_range(boost::edges(g))) {
auto s = source(e, g);
auto t = target(e, g);
std::cout << "Edge " << g[s].i << " -> " << g[t].i << " (weight = " << g[e].weight << ")\n";
}
// let's find a shortest path:
std::vector<size_t> predecessors(num_vertices(g));
std::vector<double> distance(num_vertices(g));
boost::dijkstra_shortest_paths(g, *vertices(g).first,
boost::predecessor_map(predecessors.data()).distance_map(distance.data())
.weight_map(get(&EdgeProperties::weight, g)));
}
输出:
Vertex 23
Vertex 67
Edge 23 -> 67 (weight = 1)
Edge 67 -> 23 (weight = 0)
等待-不要忘记这个问题!
我不会我认为上面显示的问题是an X/Y problem。
如果您没有自定义类包装的障碍,那么就可以检测到重复的边缘(有关背景,请参见if add_vertex in BGL checks for the existence of the vertex):
struct { size_t from, to; double weight; } edge_data[] = {
{0, 1, 1.0},
{1, 0, 0.0},
{0, 1, 99.999} // oops, a duplicate
};
for(auto request : edge_data) {
auto addition = add_edge(request.from, request.to, { request.weight }, g);
if (!addition.second) {
auto& weight = g[addition.first].weight;
std::cout << "Edge already existed, changing weight from " << weight << " to " << request.weight << "\n";
weight = request.weight;
}
}
这将打印 Live On Coliru :
Edge already existed, changing weight from 1 to 99.999
如果您愿意,您当然可以写得更有表现力:
Graph::edge_descriptor e;
bool inserted;
boost::tie(e, inserted) = add_edge(request.from, request.to, { request.weight }, g);
或者,具有一些c++ 17的才能:
auto [e, inserted] = add_edge(request.from, request.to, { request.weight }, g);
从这里更多
另外,极有可能还需要在顶点上进行唯一性检查,因此最终得到图创建代码,如在此答案中可以看到的:Boost BGL BFS Find all unique paths from Source to Target
Graph read_graph() {
std::istringstream iss(R"(
0 1 0.001
0 2 0.1
0 3 0.001
1 5 0.001
2 3 0.001
3 4 0.1
1 482 0.1
482 635 0.001
4 705 0.1
705 5 0.1
1 1491 0.01
1 1727 0.01
1 1765 0.01)");
Graph g;
std::map<int,Vertex> idx; // temporary lookup of existing vertices
auto vertex = [&](int id) mutable {
auto it = idx.find(id);
if (it != idx.end())
return it->second;
return idx.emplace(id, add_vertex(id, g)).first->second;
};
for (std::string line; getline(iss, line);) {
std::istringstream ls(line);
int s,t; double w;
if (ls >> s >> t >> w) {
add_edge(vertex(s), vertex(t), w, g);
} else {
std::cerr << "Skipped invalid line '" << line << "'\n";
}
}
return g;
}
其他示例显示如何在保持前后边缘之间的映射的同时插入
a -> b
和b -> a
:Accessing specific edges in boost::graph with integer index概要
即将来临的时候,我建议您熟悉更新,更优雅的Boost Graph功能。最后,封装图形是完全正常的,最终可能会得到更优美的界面。