我一直在寻找从多元正态分布采样的便捷方法。有谁知道一个现成的代码片段可以做到这一点?对于矩阵/vector ,我更喜欢使用Boost或Eigen或其他我不熟悉的非凡的库,但可以在适当的时候使用GSL。如果该方法接受非负定协方差矩阵而不是要求正定(例如,如Cholesky分解),我也很喜欢它。这在MATLAB,NumPy等中都存在,但是我很难找到现成的C/C++解决方案。
如果我必须自己实现它,我会提示,但这很好。如果我这样做,就应该像我一样Wikipedia makes it sound
我希望这个工作很快。是否有人有直觉,何时应该检查协方差矩阵是否为正,如果是,则改用Cholesky?
最佳答案
既然这个问题引起了很多见解,所以我认为我应该为posting to the Eigen forums找到的最终答案贴上代码。该代码使用Boost表示单变量正态,使用Eigen表示矩阵。感觉很不合常规,因为它涉及使用“内部” namespace ,但是它可以工作。如果有人提出建议,我愿意改进它。
#include <Eigen/Dense>
#include <boost/random/mersenne_twister.hpp>
#include <boost/random/normal_distribution.hpp>
/*
We need a functor that can pretend it's const,
but to be a good random number generator
it needs mutable state.
*/
namespace Eigen {
namespace internal {
template<typename Scalar>
struct scalar_normal_dist_op
{
static boost::mt19937 rng; // The uniform pseudo-random algorithm
mutable boost::normal_distribution<Scalar> norm; // The gaussian combinator
EIGEN_EMPTY_STRUCT_CTOR(scalar_normal_dist_op)
template<typename Index>
inline const Scalar operator() (Index, Index = 0) const { return norm(rng); }
};
template<typename Scalar> boost::mt19937 scalar_normal_dist_op<Scalar>::rng;
template<typename Scalar>
struct functor_traits<scalar_normal_dist_op<Scalar> >
{ enum { Cost = 50 * NumTraits<Scalar>::MulCost, PacketAccess = false, IsRepeatable = false }; };
} // end namespace internal
} // end namespace Eigen
/*
Draw nn samples from a size-dimensional normal distribution
with a specified mean and covariance
*/
void main()
{
int size = 2; // Dimensionality (rows)
int nn=5; // How many samples (columns) to draw
Eigen::internal::scalar_normal_dist_op<double> randN; // Gaussian functor
Eigen::internal::scalar_normal_dist_op<double>::rng.seed(1); // Seed the rng
// Define mean and covariance of the distribution
Eigen::VectorXd mean(size);
Eigen::MatrixXd covar(size,size);
mean << 0, 0;
covar << 1, .5,
.5, 1;
Eigen::MatrixXd normTransform(size,size);
Eigen::LLT<Eigen::MatrixXd> cholSolver(covar);
// We can only use the cholesky decomposition if
// the covariance matrix is symmetric, pos-definite.
// But a covariance matrix might be pos-semi-definite.
// In that case, we'll go to an EigenSolver
if (cholSolver.info()==Eigen::Success) {
// Use cholesky solver
normTransform = cholSolver.matrixL();
} else {
// Use eigen solver
Eigen::SelfAdjointEigenSolver<Eigen::MatrixXd> eigenSolver(covar);
normTransform = eigenSolver.eigenvectors()
* eigenSolver.eigenvalues().cwiseSqrt().asDiagonal();
}
Eigen::MatrixXd samples = (normTransform
* Eigen::MatrixXd::NullaryExpr(size,nn,randN)).colwise()
+ mean;
std::cout << "Mean\n" << mean << std::endl;
std::cout << "Covar\n" << covar << std::endl;
std::cout << "Samples\n" << samples << std::endl;
}
关于c++ - C++中多元正态/高斯分布的样本,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/6142576/