根据我在 an earlier question 上收到的答案,我编写了一个 ETL 程序,如下所示:
import pandas as pd
from dask import delayed
from dask import dataframe as dd
def preprocess_files(filename):
"""Reads file, collects metadata and identifies lines not containing data.
"""
...
return filename, metadata, skiprows
def load_file(filename, skiprows):
"""Loads the file into a pandas dataframe, skipping lines not containing data."""
return df
def process_errors(filename, skiplines):
"""Calculates error metrics based on the information
collected in the pre-processing step
"""
...
def process_metadata(filename, metadata):
"""Analyses metadata collected in the pre-processing step."""
...
values = [delayed(preprocess_files)(fn) for fn in file_names]
filenames = [value[0] for value in values]
metadata = [value[1] for value in values]
skiprows = [value[2] for value in values]
error_results = [delayed(process_errors)(arg[0], arg[1])
for arg in zip(filenames, skiprows)]
meta_results = [delayed(process_metadata)(arg[0], arg[1])
for arg in zip(filenames, metadata)]
dfs = [delayed(load_file)(arg[0], arg[1])
for arg in zip(filenames, skiprows)]
... # several delayed transformations defined on individual dataframes
# finally: categorize several dataframe columns and write them to HDF5
dfs = dd.from_delayed(dfs, meta=metaframe)
dfs.categorize(columns=[...]) # I would like to delay this
dfs.to_hdf(hdf_file_name, '/data',...) # I would also like to delay this
all_operations = error_results + meta_results # + delayed operations on dask dataframe
# trigger all computation at once,
# allow re-using of data collected in the pre-processing step.
dask.compute(*all_operations)
ETL 过程经过几个步骤:
process_metadata
、 process_errors
、 load_file
)具有共享数据依赖性,因为它们都使用在预处理步骤中收集的信息。理想情况下,预处理步骤只运行一次,结果跨进程共享。 我遇到的问题是,
categorize
和 to_hdf
会立即触发计算,丢弃元数据和错误数据,否则 process_errors
和 process_metadata
将进一步处理这些元数据和错误数据。有人告诉我,在
dask.dataframes
上延迟操作会导致问题,这就是为什么我很想知道是否有可能触发整个计算(处理元数据、处理错误、加载数据帧、转换数据帧并以 HDF 格式存储它们) ),允许不同的进程共享在预处理阶段收集的数据。 最佳答案
有两种方法可以解决您的问题:
延迟一切
to_hdf 调用接受
compute=
关键字参数,您可以将其设置为 False。如果为 False,它将返回一个 dask.delayed
值,您可以随时计算该值。但是,如果您想继续使用 dask.dataframe,则需要立即计算分类调用。如果不立即或多或少地遍历数据,我们将无法创建一致的 dask.dataframe。最近 Pandas 围绕联合分类的改进将使我们在 future 改变这一点,但现在你被困住了。如果这对您来说是一个障碍,那么您将不得不切换到
dask.delayed
并使用 df.to_delayed()
手动处理一些事情分阶段计算
如果您使用 distributed scheduler ,则可以使用
.persist
method 暂存计算。from dask.distributed import Executor
e = Executor() # make a local "cluster" on your laptop
delayed_values = e.persist(*delayed_values)
... define further computations on delayed values ...
results = dask.compute(results) # compute as normal
这将让您触发一些计算,并且仍然让您继续定义您的计算。您保留的值将保留在内存中。
关于python - 在 Dask 中重用中间结果(混合延迟和 dask.dataframe),我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/39411407/