我正在尝试使用Stanford POS标记器和NER编写关键字提取程序。对于关键字提取,我只对专有名词感兴趣。这是基本方法
样例代码
docText="'Jack Frost works for Boeing Company. He manages 5 aircraft and their crew in London"
words = re.split("\W+",docText)
stops = set(stopwords.words("english"))
#remove stop words from the list
words = [w for w in words if w not in stops and len(w) > 2]
# Stemming
pstem = PorterStemmer()
words = [pstem.stem(w) for w in words]
nounsWeWant = set(['NN' ,'NNS', 'NNP', 'NNPS'])
finalWords = []
stn = StanfordNERTagger('english.all.3class.distsim.crf.ser.gz')
stp = StanfordPOSTagger('english-bidirectional-distsim.tagger')
for w in words:
if stp.tag([w.lower()])[0][1] not in nounsWeWant:
finalWords.append(w.lower())
else:
finalWords.append(w)
finalString = " ".join(finalWords)
print finalString
tagged = stn.tag(finalWords)
print tagged
这给了我
Jack Frost work Boe Compani manag aircraft crew London
[(u'Jack', u'PERSON'), (u'Frost', u'PERSON'), (u'work', u'O'), (u'Boe', u'O'), (u'Compani', u'O'), (u'manag', u'O'), (u'aircraft', u'O'), (u'crew', u'O'), (u'London', u'LOCATION')]
如此明确,我不想阻止波音公司。也没有公司。我需要阻止这些单词,因为我的输入可能包含
Performing
之类的术语。我已经看到NER会选择像Performing
这样的单词作为专有名词,因此可以归类为Organization
。因此,首先我将所有单词都摘下来,然后转换为小写。然后,我检查该词的POS标签是否为名词。如果是这样,我保持原样。如果没有,我将单词转换为小写并将其添加到将传递给NER的最终单词列表中。关于如何避免词干专有名词的任何想法?
最佳答案
使用完整的Stanford CoreNLP管道来处理您的NLP工具链。避免使用自己的 token 生成器,清理器,POS标记器等。它不能与NER工具配合使用。
wget http://nlp.stanford.edu/software/stanford-corenlp-full-2015-12-09.zip
unzip http://nlp.stanford.edu/software/stanford-corenlp-full-2015-12-09.zip
cd stanford-corenlp-full-2015-12-09
echo "Jack Frost works for Boeing Company. He manages 5 aircraft and their crew in London" > test.txt
java -cp "*" -Xmx2g edu.stanford.nlp.pipeline.StanfordCoreNLP -annotators tokenize,ssplit,pos,lemma,ner,parse,dcoref -file test.txt
cat test.txt.out
[出去]:
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet href="CoreNLP-to-HTML.xsl" type="text/xsl"?>
<root>
<document>
<sentences>
<sentence id="1">
<tokens>
<token id="1">
<word>Jack</word>
<lemma>Jack</lemma>
<CharacterOffsetBegin>0</CharacterOffsetBegin>
<CharacterOffsetEnd>4</CharacterOffsetEnd>
<POS>NNP</POS>
<NER>PERSON</NER>
<Speaker>PER0</Speaker>
</token>
<token id="2">
<word>Frost</word>
<lemma>Frost</lemma>
<CharacterOffsetBegin>5</CharacterOffsetBegin>
<CharacterOffsetEnd>10</CharacterOffsetEnd>
<POS>NNP</POS>
<NER>PERSON</NER>
<Speaker>PER0</Speaker>
</token>
<token id="3">
<word>works</word>
<lemma>work</lemma>
<CharacterOffsetBegin>11</CharacterOffsetBegin>
<CharacterOffsetEnd>16</CharacterOffsetEnd>
<POS>VBZ</POS>
<NER>O</NER>
<Speaker>PER0</Speaker>
</token>
<token id="4">
<word>for</word>
<lemma>for</lemma>
<CharacterOffsetBegin>17</CharacterOffsetBegin>
<CharacterOffsetEnd>20</CharacterOffsetEnd>
<POS>IN</POS>
<NER>O</NER>
<Speaker>PER0</Speaker>
</token>
<token id="5">
<word>Boeing</word>
<lemma>Boeing</lemma>
<CharacterOffsetBegin>21</CharacterOffsetBegin>
<CharacterOffsetEnd>27</CharacterOffsetEnd>
<POS>NNP</POS>
<NER>ORGANIZATION</NER>
<Speaker>PER0</Speaker>
</token>
<token id="6">
<word>Company</word>
<lemma>Company</lemma>
<CharacterOffsetBegin>28</CharacterOffsetBegin>
<CharacterOffsetEnd>35</CharacterOffsetEnd>
<POS>NNP</POS>
<NER>ORGANIZATION</NER>
<Speaker>PER0</Speaker>
</token>
<token id="7">
<word>.</word>
<lemma>.</lemma>
<CharacterOffsetBegin>35</CharacterOffsetBegin>
<CharacterOffsetEnd>36</CharacterOffsetEnd>
<POS>.</POS>
<NER>O</NER>
<Speaker>PER0</Speaker>
</token>
</tokens>
<parse>(ROOT (S (NP (NNP Jack) (NNP Frost)) (VP (VBZ works) (PP (IN for) (NP (NNP Boeing) (NNP Company)))) (. .))) </parse>
<dependencies type="basic-dependencies">
<dep type="root">
<governor idx="0">ROOT</governor>
<dependent idx="3">works</dependent>
</dep>
<dep type="compound">
<governor idx="2">Frost</governor>
<dependent idx="1">Jack</dependent>
</dep>
<dep type="nsubj">
<governor idx="3">works</governor>
<dependent idx="2">Frost</dependent>
</dep>
<dep type="case">
<governor idx="6">Company</governor>
<dependent idx="4">for</dependent>
</dep>
<dep type="compound">
<governor idx="6">Company</governor>
<dependent idx="5">Boeing</dependent>
</dep>
<dep type="nmod">
<governor idx="3">works</governor>
<dependent idx="6">Company</dependent>
</dep>
<dep type="punct">
<governor idx="3">works</governor>
<dependent idx="7">.</dependent>
</dep>
</dependencies>
<dependencies type="collapsed-dependencies">
<dep type="root">
<governor idx="0">ROOT</governor>
<dependent idx="3">works</dependent>
</dep>
<dep type="compound">
<governor idx="2">Frost</governor>
<dependent idx="1">Jack</dependent>
</dep>
<dep type="nsubj">
<governor idx="3">works</governor>
<dependent idx="2">Frost</dependent>
</dep>
<dep type="case">
<governor idx="6">Company</governor>
<dependent idx="4">for</dependent>
</dep>
<dep type="compound">
<governor idx="6">Company</governor>
<dependent idx="5">Boeing</dependent>
</dep>
<dep type="nmod:for">
<governor idx="3">works</governor>
<dependent idx="6">Company</dependent>
</dep>
<dep type="punct">
<governor idx="3">works</governor>
<dependent idx="7">.</dependent>
</dep>
</dependencies>
<dependencies type="collapsed-ccprocessed-dependencies">
<dep type="root">
<governor idx="0">ROOT</governor>
<dependent idx="3">works</dependent>
</dep>
<dep type="compound">
<governor idx="2">Frost</governor>
<dependent idx="1">Jack</dependent>
</dep>
<dep type="nsubj">
<governor idx="3">works</governor>
<dependent idx="2">Frost</dependent>
</dep>
<dep type="case">
<governor idx="6">Company</governor>
<dependent idx="4">for</dependent>
</dep>
<dep type="compound">
<governor idx="6">Company</governor>
<dependent idx="5">Boeing</dependent>
</dep>
<dep type="nmod:for">
<governor idx="3">works</governor>
<dependent idx="6">Company</dependent>
</dep>
<dep type="punct">
<governor idx="3">works</governor>
<dependent idx="7">.</dependent>
</dep>
</dependencies>
</sentence>
<sentence id="2">
<tokens>
<token id="1">
<word>He</word>
<lemma>he</lemma>
<CharacterOffsetBegin>37</CharacterOffsetBegin>
<CharacterOffsetEnd>39</CharacterOffsetEnd>
<POS>PRP</POS>
<NER>O</NER>
<Speaker>PER0</Speaker>
</token>
<token id="2">
<word>manages</word>
<lemma>manage</lemma>
<CharacterOffsetBegin>40</CharacterOffsetBegin>
<CharacterOffsetEnd>47</CharacterOffsetEnd>
<POS>VBZ</POS>
<NER>O</NER>
<Speaker>PER0</Speaker>
</token>
<token id="3">
<word>5</word>
<lemma>5</lemma>
<CharacterOffsetBegin>48</CharacterOffsetBegin>
<CharacterOffsetEnd>49</CharacterOffsetEnd>
<POS>CD</POS>
<NER>NUMBER</NER>
<NormalizedNER>5.0</NormalizedNER>
<Speaker>PER0</Speaker>
</token>
<token id="4">
<word>aircraft</word>
<lemma>aircraft</lemma>
<CharacterOffsetBegin>50</CharacterOffsetBegin>
<CharacterOffsetEnd>58</CharacterOffsetEnd>
<POS>NN</POS>
<NER>O</NER>
<Speaker>PER0</Speaker>
</token>
<token id="5">
<word>and</word>
<lemma>and</lemma>
<CharacterOffsetBegin>59</CharacterOffsetBegin>
<CharacterOffsetEnd>62</CharacterOffsetEnd>
<POS>CC</POS>
<NER>O</NER>
<Speaker>PER0</Speaker>
</token>
<token id="6">
<word>their</word>
<lemma>they</lemma>
<CharacterOffsetBegin>63</CharacterOffsetBegin>
<CharacterOffsetEnd>68</CharacterOffsetEnd>
<POS>PRP$</POS>
<NER>O</NER>
<Speaker>PER0</Speaker>
</token>
<token id="7">
<word>crew</word>
<lemma>crew</lemma>
<CharacterOffsetBegin>69</CharacterOffsetBegin>
<CharacterOffsetEnd>73</CharacterOffsetEnd>
<POS>NN</POS>
<NER>O</NER>
<Speaker>PER0</Speaker>
</token>
<token id="8">
<word>in</word>
<lemma>in</lemma>
<CharacterOffsetBegin>74</CharacterOffsetBegin>
<CharacterOffsetEnd>76</CharacterOffsetEnd>
<POS>IN</POS>
<NER>O</NER>
<Speaker>PER0</Speaker>
</token>
<token id="9">
<word>London</word>
<lemma>London</lemma>
<CharacterOffsetBegin>77</CharacterOffsetBegin>
<CharacterOffsetEnd>83</CharacterOffsetEnd>
<POS>NNP</POS>
<NER>LOCATION</NER>
<Speaker>PER0</Speaker>
</token>
</tokens>
<parse>(ROOT (S (NP (PRP He)) (VP (VBZ manages) (NP (NP (CD 5) (NN aircraft)) (CC and) (NP (NP (PRP$ their) (NN crew)) (PP (IN in) (NP (NNP London)))))))) </parse>
<dependencies type="basic-dependencies">
<dep type="root">
<governor idx="0">ROOT</governor>
<dependent idx="2">manages</dependent>
</dep>
<dep type="nsubj">
<governor idx="2">manages</governor>
<dependent idx="1">He</dependent>
</dep>
<dep type="nummod">
<governor idx="4">aircraft</governor>
<dependent idx="3">5</dependent>
</dep>
<dep type="dobj">
<governor idx="2">manages</governor>
<dependent idx="4">aircraft</dependent>
</dep>
<dep type="cc">
<governor idx="4">aircraft</governor>
<dependent idx="5">and</dependent>
</dep>
<dep type="nmod:poss">
<governor idx="7">crew</governor>
<dependent idx="6">their</dependent>
</dep>
<dep type="conj">
<governor idx="4">aircraft</governor>
<dependent idx="7">crew</dependent>
</dep>
<dep type="case">
<governor idx="9">London</governor>
<dependent idx="8">in</dependent>
</dep>
<dep type="nmod">
<governor idx="7">crew</governor>
<dependent idx="9">London</dependent>
</dep>
</dependencies>
<dependencies type="collapsed-dependencies">
<dep type="root">
<governor idx="0">ROOT</governor>
<dependent idx="2">manages</dependent>
</dep>
<dep type="nsubj">
<governor idx="2">manages</governor>
<dependent idx="1">He</dependent>
</dep>
<dep type="nummod">
<governor idx="4">aircraft</governor>
<dependent idx="3">5</dependent>
</dep>
<dep type="dobj">
<governor idx="2">manages</governor>
<dependent idx="4">aircraft</dependent>
</dep>
<dep type="cc">
<governor idx="4">aircraft</governor>
<dependent idx="5">and</dependent>
</dep>
<dep type="nmod:poss">
<governor idx="7">crew</governor>
<dependent idx="6">their</dependent>
</dep>
<dep type="conj:and">
<governor idx="4">aircraft</governor>
<dependent idx="7">crew</dependent>
</dep>
<dep type="case">
<governor idx="9">London</governor>
<dependent idx="8">in</dependent>
</dep>
<dep type="nmod:in">
<governor idx="7">crew</governor>
<dependent idx="9">London</dependent>
</dep>
</dependencies>
<dependencies type="collapsed-ccprocessed-dependencies">
<dep type="root">
<governor idx="0">ROOT</governor>
<dependent idx="2">manages</dependent>
</dep>
<dep type="nsubj">
<governor idx="2">manages</governor>
<dependent idx="1">He</dependent>
</dep>
<dep type="nummod">
<governor idx="4">aircraft</governor>
<dependent idx="3">5</dependent>
</dep>
<dep type="dobj">
<governor idx="2">manages</governor>
<dependent idx="4">aircraft</dependent>
</dep>
<dep type="cc">
<governor idx="4">aircraft</governor>
<dependent idx="5">and</dependent>
</dep>
<dep type="nmod:poss">
<governor idx="7">crew</governor>
<dependent idx="6">their</dependent>
</dep>
<dep type="dobj" extra="true">
<governor idx="2">manages</governor>
<dependent idx="7">crew</dependent>
</dep>
<dep type="conj:and">
<governor idx="4">aircraft</governor>
<dependent idx="7">crew</dependent>
</dep>
<dep type="case">
<governor idx="9">London</governor>
<dependent idx="8">in</dependent>
</dep>
<dep type="nmod:in">
<governor idx="7">crew</governor>
<dependent idx="9">London</dependent>
</dep>
</dependencies>
</sentence>
</sentences>
<coreference>
<coreference>
<mention representative="true">
<sentence>1</sentence>
<start>1</start>
<end>3</end>
<head>2</head>
<text>Jack Frost</text>
</mention>
<mention>
<sentence>2</sentence>
<start>1</start>
<end>2</end>
<head>1</head>
<text>He</text>
</mention>
</coreference>
</coreference>
</document>
</root>
或获取json输出:
java -cp "*" -Xmx2g edu.stanford.nlp.pipeline.StanfordCoreNLP -annotators tokenize,ssplit,pos,lemma,ner,parse,dcoref -file test.txt -outputFormat json
如果您确实需要python包装器,请参见https://github.com/smilli/py-corenlp
$ cd stanford-corenlp-full-2015-12-09
$ export CLASSPATH=protobuf.jar:joda-time.jar:jollyday.jar:xom-1.2.10.jar:stanford-corenlp-3.6.0.jar:stanford-corenlp-3.6.0-models.jar:slf4j-api.jar
$ java -mx4g edu.stanford.nlp.pipeline.StanfordCoreNLPServer &
cd
$ git clone https://github.com/smilli/py-corenlp.git
$ cd py-corenlp
$ python
>>> from corenlp import StanfordCoreNLP
>>> nlp = StanfordCoreNLP('http://localhost:9000')
>>> text = ("Jack Frost works for Boeing Company. He manages 5 aircraft and their crew in London")
>>> output = nlp.annotate(text, properties={'annotators': 'tokenize,ssplit,pos,ner', 'outputFormat': 'json'})
>>> output
{u'sentences': [{u'parse': u'SENTENCE_SKIPPED_OR_UNPARSABLE', u'index': 0, u'tokens': [{u'index': 1, u'word': u'Jack', u'lemma': u'Jack', u'after': u' ', u'pos': u'NNP', u'characterOffsetEnd': 4, u'characterOffsetBegin': 0, u'originalText': u'Jack', u'ner': u'PERSON', u'before': u''}, {u'index': 2, u'word': u'Frost', u'lemma': u'Frost', u'after': u' ', u'pos': u'NNP', u'characterOffsetEnd': 10, u'characterOffsetBegin': 5, u'originalText': u'Frost', u'ner': u'PERSON', u'before': u' '}, {u'index': 3, u'word': u'works', u'lemma': u'work', u'after': u' ', u'pos': u'VBZ', u'characterOffsetEnd': 16, u'characterOffsetBegin': 11, u'originalText': u'works', u'ner': u'O', u'before': u' '}, {u'index': 4, u'word': u'for', u'lemma': u'for', u'after': u' ', u'pos': u'IN', u'characterOffsetEnd': 20, u'characterOffsetBegin': 17, u'originalText': u'for', u'ner': u'O', u'before': u' '}, {u'index': 5, u'word': u'Boeing', u'lemma': u'Boeing', u'after': u' ', u'pos': u'NNP', u'characterOffsetEnd': 27, u'characterOffsetBegin': 21, u'originalText': u'Boeing', u'ner': u'ORGANIZATION', u'before': u' '}, {u'index': 6, u'word': u'Company', u'lemma': u'Company', u'after': u'', u'pos': u'NNP', u'characterOffsetEnd': 35, u'characterOffsetBegin': 28, u'originalText': u'Company', u'ner': u'ORGANIZATION', u'before': u' '}, {u'index': 7, u'word': u'.', u'lemma': u'.', u'after': u' ', u'pos': u'.', u'characterOffsetEnd': 36, u'characterOffsetBegin': 35, u'originalText': u'.', u'ner': u'O', u'before': u''}]}, {u'parse': u'SENTENCE_SKIPPED_OR_UNPARSABLE', u'index': 1, u'tokens': [{u'index': 1, u'word': u'He', u'lemma': u'he', u'after': u' ', u'pos': u'PRP', u'characterOffsetEnd': 39, u'characterOffsetBegin': 37, u'originalText': u'He', u'ner': u'O', u'before': u' '}, {u'index': 2, u'word': u'manages', u'lemma': u'manage', u'after': u' ', u'pos': u'VBZ', u'characterOffsetEnd': 47, u'characterOffsetBegin': 40, u'originalText': u'manages', u'ner': u'O', u'before': u' '}, {u'index': 3, u'after': u' ', u'word': u'5', u'lemma': u'5', u'normalizedNER': u'5.0', u'pos': u'CD', u'characterOffsetEnd': 49, u'characterOffsetBegin': 48, u'originalText': u'5', u'ner': u'NUMBER', u'before': u' '}, {u'index': 4, u'word': u'aircraft', u'lemma': u'aircraft', u'after': u' ', u'pos': u'NN', u'characterOffsetEnd': 58, u'characterOffsetBegin': 50, u'originalText': u'aircraft', u'ner': u'O', u'before': u' '}, {u'index': 5, u'word': u'and', u'lemma': u'and', u'after': u' ', u'pos': u'CC', u'characterOffsetEnd': 62, u'characterOffsetBegin': 59, u'originalText': u'and', u'ner': u'O', u'before': u' '}, {u'index': 6, u'word': u'their', u'lemma': u'they', u'after': u' ', u'pos': u'PRP$', u'characterOffsetEnd': 68, u'characterOffsetBegin': 63, u'originalText': u'their', u'ner': u'O', u'before': u' '}, {u'index': 7, u'word': u'crew', u'lemma': u'crew', u'after': u' ', u'pos': u'NN', u'characterOffsetEnd': 73, u'characterOffsetBegin': 69, u'originalText': u'crew', u'ner': u'O', u'before': u' '}, {u'index': 8, u'word': u'in', u'lemma': u'in', u'after': u' ', u'pos': u'IN', u'characterOffsetEnd': 76, u'characterOffsetBegin': 74, u'originalText': u'in', u'ner': u'O', u'before': u' '}, {u'index': 9, u'word': u'London', u'lemma': u'London', u'after': u'', u'pos': u'NNP', u'characterOffsetEnd': 83, u'characterOffsetBegin': 77, u'originalText': u'London', u'ner': u'LOCATION', u'before': u' '}]}]}
>>> annotated_sent0 = output['sentences'][0]
>>> for token in annotated_sent0['tokens']:
... print token['word'], token['lemma'], token['pos'], token['ner']
...
Jack Jack NNP PERSON
Frost Frost NNP PERSON
works work VBZ O
for for IN O
Boeing Boeing NNP ORGANIZATION
Company Company NNP ORGANIZATION
. . . O
可能这是您想要的输出:
>>> " ".join(token['lemma'] for token in annotated_sent0['tokens'])
Jack Frost work for Boeing Company
>>> " ".join(token['word'] for token in annotated_sent0['tokens'])
Jack Frost works for Boeing Company
如果要使用NLTK随附的包装器,则必须等待一会儿,直到this issue解决; P
关于python - nltk : How to prevent stemming of proper nouns,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/34455749/