我有以下神经网络代码,我只是在构建代码库的同时,从基本问题(例如XOR问题)着手。这是一个业余爱好项目。

#include <iostream>
#include <array>
#include <random>
#include <chrono>
#include <iomanip>
#include <fstream>
#include <algorithm>
#include <iomanip>

typedef float DataType;
typedef DataType (*ActivationFuncPtr)(const DataType&);

static DataType learningRate = 0.02;
static std::size_t numberEpochs = 1000000;

DataType sigmoid(const DataType& x)
{
    return DataType(1) / (DataType(1) + std::exp(-x));
}

template<typename T>
class Random
{
public:
    T operator()()
    {
        return m_dis(m_mt);
    }

protected:
    static std::mt19937 m_mt;
    static std::uniform_real_distribution<T> m_dis;
};

template<typename T> std::mt19937 Random<T>::m_mt(std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::system_clock::now().time_since_epoch()).count());
template<typename T> std::uniform_real_distribution<T> Random<T>::m_dis(0,1);

template<std::size_t NumInputs>
class Neuron
{
public:

    Neuron(ActivationFuncPtr activationFunction)
    :
        m_activationFunction(activationFunction)
    {
        Random<DataType> r;
        std::generate(m_weights.begin(),m_weights.end(),[&]()
        {
            return r();
        });
        m_biasWeight = r();
    }

    void FeedForward(const std::array<DataType,NumInputs>& inputValues)
    {
        DataType sum = m_biasWeight;
        for(std::size_t i = 0; i < inputValues.size(); ++i)
            sum += inputValues[i] * m_weights[i];
        m_output = m_activationFunction(sum);

        m_netInput = sum;
    }

    DataType GetOutput() const
    {
        return m_output;
    }

    DataType GetNetInput() const
    {
        return m_netInput;
    }

    std::array<DataType,NumInputs> Backpropagate(const DataType& error,
                           const std::array<DataType,NumInputs>& inputValues,
                           std::array<DataType,NumInputs+1>& weightAdjustments)
    {
        DataType errorOverOutput = error;
        DataType outputOverNetInput = m_output * (DataType(1) - m_output); // sigmoid derivative

        std::array<DataType,NumInputs> netInputOverWeight;
        for(std::size_t i = 0; i < NumInputs; ++i)
        {
            netInputOverWeight[i] = inputValues[i];
        }

        DataType netInputOverBias = DataType(1);

        std::array<DataType,NumInputs> errorOverWeight;
        for(std::size_t i = 0; i < NumInputs; ++i)
        {
            errorOverWeight[i] = errorOverOutput * outputOverNetInput * netInputOverWeight[i];
        }

        DataType errorOverBias = errorOverOutput * outputOverNetInput * netInputOverBias;

        for(std::size_t i = 0; i < NumInputs; ++i)
        {
            weightAdjustments[i] = errorOverWeight[i];
        }
        weightAdjustments[NumInputs] = errorOverBias;

        DataType errorOverNetInput = errorOverOutput * outputOverNetInput;

        std::array<DataType,NumInputs> errorWeights;
        for(std::size_t i = 0; i < NumInputs; ++i)
        {
            errorWeights[i] = errorOverNetInput * m_weights[i];
        }

        return errorWeights;
    }

    void AdjustWeights(const std::array<DataType,NumInputs+1>& adjustments)
    {
        for(std::size_t i = 0; i < NumInputs; ++i)
            m_weights[i] = m_weights[i] - learningRate * adjustments[i];
        m_biasWeight = m_biasWeight - learningRate * adjustments[NumInputs];
    }

    const std::array<DataType,NumInputs> GetWeights() const {return m_weights;}
    const DataType& GetBiasWeight() const { return m_biasWeight; }

protected:
    std::array<DataType,NumInputs> m_weights;
    DataType m_biasWeight;

    ActivationFuncPtr m_activationFunction;

    DataType m_output;
    DataType m_netInput;
};

main()
{

    std::array<std::array<DataType,2>,4> inputData = {{{0,0},{0,1},{1,0},{1,1}}};
    std::array<std::array<DataType,1>,4> desiredOutputs = {{{0},{1},{1},{0}}};
    std::array<Neuron<2>*,2> hiddenLayer1 = {{ new Neuron<2>(sigmoid), new Neuron<2>(sigmoid) }};
    std::array<Neuron<2>*,1> outputLayer = {{ new Neuron<2>(sigmoid) }};

    std::cout << std::fixed << std::setprecision(80);

    DataType minError = std::numeric_limits<DataType>::max();
    bool minErrorFound = false;

    std::size_t epochNumber = 0;
    while(epochNumber < numberEpochs && !minErrorFound)
    {
        DataType epochMSE = 0;

        for(std::size_t row = 0; row < inputData.size(); ++row)
        {
            const std::array<DataType,2>& dataRow = inputData[row];
            const std::array<DataType,1>& outputRow = desiredOutputs[row];

            // Feed the values through to the output layer

            hiddenLayer1[0]->FeedForward(dataRow);
            hiddenLayer1[1]->FeedForward(dataRow);

            DataType output0 = hiddenLayer1[0]->GetOutput();
            DataType output1 = hiddenLayer1[1]->GetOutput();

            outputLayer[0]->FeedForward({output0,output1});

            DataType finalOutput0 = outputLayer[0]->GetOutput();

            // if there was more than 1 output neuron these errors need to be summed together first to create total error
            DataType totalError = 0.5 * std::pow(outputRow[0] - finalOutput0,2.f);
            epochMSE += totalError * totalError;

            DataType propagateError = -(outputRow[0] - finalOutput0);

            std::array<DataType,3> weightAdjustmentsOutput;
            std::array<DataType,2> outputError = outputLayer[0]->Backpropagate(propagateError,
                                                                   {output0,output1},
                                                                   weightAdjustmentsOutput);

            std::array<DataType,3> weightAdjustmentsHidden1;
            hiddenLayer1[0]->Backpropagate(outputError[0],dataRow,weightAdjustmentsHidden1);

            std::array<DataType,3> weightAdjustmentsHidden2;
            hiddenLayer1[1]->Backpropagate(outputError[1],dataRow,weightAdjustmentsHidden2);

            outputLayer[0]->AdjustWeights(weightAdjustmentsOutput);
            hiddenLayer1[0]->AdjustWeights(weightAdjustmentsHidden1);
            hiddenLayer1[1]->AdjustWeights(weightAdjustmentsHidden2);
        }

        epochMSE *= DataType(1) / inputData.size();

        if(epochMSE >= minError + 0.00000001)
        {
            minErrorFound = true;
        }
        else
            minError = epochMSE;

        ++epochNumber;
    }

    std::cout << std::fixed << std::setprecision(80)
                << "\n\n====================================\n"
                << "   TRAINING COMPLETE"
                << "\n\n====================================" << std::endl;
    std::cout << "Minimum error: " << minError << std::endl;
    std::cout << "Number epochs: " << epochNumber << "/" << numberEpochs << std::endl;

    // output tests
    std::cout << std::fixed << std::setprecision(2)
                << "\n\n====================================\n"
                << "   FINAL TESTS"
                << "\n\n====================================" << std::endl;

    for(std::size_t row = 0; row < inputData.size(); ++row)
    {
        const std::array<DataType,2>& dataRow = inputData[row];
        const std::array<DataType,1>& outputRow = desiredOutputs[row];
        std::cout << dataRow[0] << "," << dataRow[1] << " (" << outputRow[0] << ")  :  ";

        // Feed the values through to the output layer

        hiddenLayer1[0]->FeedForward(dataRow);
        hiddenLayer1[1]->FeedForward(dataRow);

        DataType output0 = hiddenLayer1[0]->GetOutput();
        DataType output1 = hiddenLayer1[1]->GetOutput();

        outputLayer[0]->FeedForward({output0,output1});

        DataType finalOutput0 = outputLayer[0]->GetOutput();

        std::cout << finalOutput0 << std::endl;
    }

    return 0;
}


在大多数情况下,输出看起来像这样,我认为“太棒了!成功!”

====================================
   TRAINING COMPLETE

====================================
Minimum error: 0.00000000106923325748908837340422905981540679931640625000000000000000000000000000
Number epochs: 1000000/1000000


====================================
   FINAL TESTS

====================================
0.00,0.00 (0.00)  :  0.01
0.00,1.00 (1.00)  :  0.99
1.00,0.00 (1.00)  :  0.99
1.00,1.00 (0.00)  :  0.01

Process returned 0 (0x0)   execution time : 0.992 s
Press any key to continue.


但是,以下是偶尔出现的输出,我想了解一下,这是过度拟合还是拟合不足,或者我在某处做错了什么?我该如何预防?

====================================
   TRAINING COMPLETE

====================================
Minimum error: 0.00787912402302026748657226562500000000000000000000000000000000000000000000000000
Number epochs: 1000000/1000000


====================================
   FINAL TESTS

====================================
0.00,0.00 (0.00)  :  0.01
0.00,1.00 (1.00)  :  0.50
1.00,0.00 (1.00)  :  0.99
1.00,1.00 (0.00)  :  0.50

Process returned 0 (0x0)   execution time : 1.024 s
Press any key to continue.


我尝试使用或多或少的时期以及更高或更低的学习率,但是我仍然偶尔会得到如上所述的结果(并不总是与上面的结果完全相同,而是相似的)。例如,以0.0021000000历元的学习率,我可能会得出以下结论:

====================================
   TRAINING COMPLETE

====================================
Minimum error: 0.01417684461921453475952148437500000000000000000000000000000000000000000000000000
Number epochs: 176477/1000000


====================================
   FINAL TESTS

====================================
0.00,0.00 (0.00)  :  0.29
0.00,1.00 (1.00)  :  0.59
1.00,0.00 (1.00)  :  0.59
1.00,1.00 (0.00)  :  0.63

Process returned 0 (0x0)   execution time : 0.225 s
Press any key to continue.


我看到它是如何退出的,因为错误增加了而不是缩小了,但这是因为我在不应该退出的时候就退出了吗?

最佳答案

你没做错任何事。请注意,即使在使用相同数量的历元和训练数据训练网络后,您也会获得不同的结果。如果您在网络中使用了更多的时间段和/或训练数据会导致错误,则可能会导致过度拟合。拟合不足是相反的。您没有拟合不足,也没有过度拟合。您可以尝试将学习率降低一个数量级或至少降低一半,提高学习率,更改训练功能或增加动力。对您来说重要的是要知道神经网络是一个非常经验的过程,如果您训练有素的网络通过了验证,那么就可以了,如果没有通过,请对其进行一些调整,然后重新训练或只是重新训练。他们的设计没有封闭式的公式,解决方案或配方。

关于c++ - 这是XOR测试的过度拟合还是不足拟合?,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/58312806/

10-13 00:01