我如何计算一些可比较的相似度分数,它告诉我 img_scene
与 img_object
相比有多相似。
当我渲染 img_matches
时,单应性成功渲染了场景中找到的对象的边界,但我需要一些类似的 score
,如 if (score > THRESHOLD) { /* have match */ } else { /* dont have match */ }
。
Mat img_scene = srcImage;
Mat img_object = _templateImage;
//-- Step 1: Detect the keypoints using SURF Detector
SurfFeatureDetector detector(_minHessian);
std::vector<KeyPoint> keypoints_object, keypoints_scene;
detector.detect(img_object, keypoints_object);
detector.detect(img_scene, keypoints_scene);
//-- Step 2: Calculate descriptors (feature vectors)
SurfDescriptorExtractor extractor;
Mat descriptors_object, descriptors_scene;
extractor.compute(img_object, keypoints_object, descriptors_object);
extractor.compute(img_scene, keypoints_scene, descriptors_scene);
if (descriptors_object.type() != descriptors_scene.type())
return;
//-- Step 3: Matching descriptor vectors using FLANN matcher
FlannBasedMatcher matcher;
std::vector<DMatch> matches;
matcher.match(descriptors_object, descriptors_scene, matches);
double max_dist = 0; double min_dist = 100;
//-- Quick calculation of max and min distances between keypoints
for (size_t i = 0; i < (size_t)descriptors_object.rows; i++ ) {
double dist = matches[i].distance;
if (dist < min_dist) min_dist = dist;
if (dist > max_dist) max_dist = dist;
}
//-- Draw only "good" matches (i.e. whose distance is less than 3*min_dist )
std::vector<DMatch> good_matches;
for(size_t i = 0; i < (size_t)descriptors_object.rows; i++) {
if (matches[i].distance < 2 * min_dist) {
good_matches.push_back(matches[i]);
}
}
if (good_matches.size() < 4)
return;
Mat img_matches;
drawMatches(img_object, keypoints_object, img_scene, keypoints_scene,
good_matches, img_matches, Scalar::all(-1), Scalar::all(-1),
vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS);
//-- Localize the object
std::vector<Point2f> obj;
std::vector<Point2f> scene;
for (size_t i = 0; i < (size_t)good_matches.size(); i++) {
//-- Get the keypoints from the good matches
obj.push_back(keypoints_object[(size_t)good_matches[i].queryIdx].pt);
scene.push_back(keypoints_scene[(size_t)good_matches[i].trainIdx].pt);
}
vector<uchar> mask;
Mat H = findHomography(obj, scene, CV_RANSAC, 3, mask);
//-- Get the corners from the image_1 (the object to be "detected")
std::vector<Point2f> obj_corners(4);
obj_corners[0] = cvPoint(0, 0);
obj_corners[1] = cvPoint(img_object.cols, 0);
obj_corners[2] = cvPoint(img_object.cols, img_object.rows);
obj_corners[3] = cvPoint(0, img_object.rows);
std::vector<Point2f> scene_corners(4);
perspectiveTransform(obj_corners, scene_corners, H);
//-- Draw lines between the corners (the mapped object in the scene - image_2 )
line(img_matches, scene_corners[0] + Point2f(img_object.cols, 0), scene_corners[1] + Point2f(img_object.cols, 0), Scalar(0, 255, 0), 4);
line(img_matches, scene_corners[1] + Point2f(img_object.cols, 0), scene_corners[2] + Point2f(img_object.cols, 0), Scalar(0, 255, 0), 4);
line(img_matches, scene_corners[2] + Point2f(img_object.cols, 0), scene_corners[3] + Point2f(img_object.cols, 0), Scalar(0, 255, 0), 4);
line(img_matches, scene_corners[3] + Point2f(img_object.cols, 0), scene_corners[0] + Point2f(img_object.cols, 0), Scalar(0, 255, 0), 4);
更新:
这是@mikesapi 提出的工作解决方案:
...
//-- Draw only "good" matches (i.e. whose distance is less than 3*min_dist )
std::vector<DMatch> good_matches;
double good_matches_sum = 0.0;
for (size_t i = 0; i < matches.size(); i++ ) {
if( matches[i].distance < max(2*min_dist, 0.02) ) {
good_matches.push_back(matches[i]);
good_matches_sum += matches[i].distance;
}
}
double score = (double)good_matches_sum / (double)good_matches.size();
if (score < 0.18) {
// have match
} else {
// dont have match
}
...
最佳答案
如果对象和场景更相似,则相似性得分更高(与相异性得分相反,更高的得分意味着它们更不相似)。由于您使用 FLANN 的距离(我假设它为您提供了描述符之间的近似欧几里德距离),因此更容易生成相异分数,因为如果描述符在描述符空间中相距较远,则欧几里德距离更大,如果它们靠近在一起,则欧几里德距离较小.
生成差异分数的一种简单方法是:
1.对于物体图像中的每个描述符:计算场景图像中每个描述符的最小距离。
2. 对(最小)距离求和,并通过对象图像中的描述符数量进行归一化。
然后你将有一个单一的分数来量化对象和场景之间的匹配。
关于ios - 计算场景和模板对象之间的相似度得分,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/23885672/