因此,我正在尝试编写一个js函数,该函数需要3个输入(多项式,猜测和限制),并使它们返回多项式的近似根。问题是,即使限制为1000,结果仍然非常不准确。是否有人对为什么会这样有任何想法?
The Method
代码:
var derivativeOfATerm = function(arr) {
var one = arr[0];
var two = arr[1];
var derivative = [];
if (two <= 0) {
return [0, 0];
} else {
derivative.push(one * two);
derivative.push(two - 1);
return derivative;
}
};
var derivativeOfPolynomial = function(arr, order = 1) {
var derivative = [];
for (var i = 0; i < arr.length; i++) {
//console.log(arr[i]);
derivative.push(derivativeOfATerm(arr[i]));
}
if (order === 1) {
return derivative;
} else {
return derivativeOfPolynomial(derivative, order - 1);
}
};
var runPolynomial = function(poly, num) {
var array = [];
for (var i = 0; i < poly.length; i++) {
array.push(Math.pow(num, poly[i][1]) * poly[i][0]);
}
return array.reduce((a, b) => a + b);
};
var newtonRootFind = function(polynomial, guess, limit = 10) {
var derivative = derivativeOfPolynomial(polynomial);
var previous = guess;
var next;
for (var i = 0; i < limit; i++) {
next = previous - (runPolynomial(polynomial, previous)) / (runPolynomial(derivative, previous));
previous = next;
console.log("%o : x=%o, p(x)=%o", i+1, next, runPolynomial(polynomial, next));
}
return previous;
};
console.log("result x=",newtonRootFind([[1,2],[1,1],[-5,0]], 5, 10));
我只有12岁,所以请尽量不要使用太多技术术语。
例如,输入
[[1,2],[1,1],[-5,0]]
或x^2+x-5
,它将返回1.79128784747792
,这不够准确。当它应该非常接近4.79...
时,它等于5
。 最佳答案
如注释中所指出的,所提供的代码按预期工作,问题在于检查解决方案x^2
是否用于正方形x*x
。
但是,在大多数类似C或Java的语言中,x^y
是按位“异或”(XOR),而不是幂运算。 x^y
作为电源操作的符号通常在Computer Algebra Systems中找到。脚本语言(例如python或gnuplot)倾向于使用x**y
。