我试图了解在时代末尾在keras进度栏中显示的精度“ acc”是什么:


  13/13 [==============================]-0s 76us / step-损耗:0.7100-acc:0.4615


在一个时代结束时,应该是所有训练样本的模型预测的准确性。但是,当在相同的训练样本上评估模型时,实际精度可能会非常不同。

以下是MLP for binary classification from keras webpage的改编示例。一个简单的顺序神经网络对随机生成的数字进行二进制分类。批处理大小与训练示例的数量相同(13),因此每个时期仅包含一个步骤。由于损失设置为binary_crossentropy,因此在metrics.py中定义的binary_accuracy用于精度计算。 MyEval类定义回调,在每个时期的末尾调用该回调。它使用两种方法来计算训练数据的准确性:a)模型评估和b)模型预测以获得预测,然后使用与keras binary_accuracy函数几乎相同的代码。这两个精度是一致的,但是大多数时间与进度栏中的精度不同。为什么它们不同?是否可以计算与进度栏中相同的精度?还是我的假设有误?

import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Dropout
from keras import callbacks

np.random.seed(1) # fix random seed for reproducibility
# Generate dummy data
x_train = np.random.random((13, 20))
y_train = np.random.randint(2, size=(13, 1))

model = Sequential()
model.add(Dense(64, input_dim=20, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(1, activation='sigmoid'))

model.compile(loss='binary_crossentropy',
              optimizer='rmsprop',
              metrics=['accuracy'])

class MyEval(callbacks.Callback):
    def on_epoch_end(self, epoch, logs=None):
        my_accuracy_1 = self.model.evaluate(x_train, y_train, verbose=0)[1]
        y_pred = self.model.predict(x_train)
        my_accuracy_2 = np.mean(np.equal(y_train, np.round(y_pred)))
        print("my accuracy 1: {}".format(my_accuracy_1))
        print("my accuracy 2: {}".format(my_accuracy_2))

my_eval = MyEval()

model.fit(x_train, y_train,
          epochs=5,
          batch_size=13,
          callbacks=[my_eval],
          shuffle=False)


上面代码的输出:

13/13 [==============================] - 0s 25ms/step - loss: 0.7303 - acc: 0.5385
my accuracy 1: 0.5384615659713745
my accuracy 2: 0.5384615384615384
Epoch 2/5
13/13 [==============================] - 0s 95us/step - loss: 0.7412 - acc: 0.4615
my accuracy 1: 0.9230769276618958
my accuracy 2: 0.9230769230769231
Epoch 3/5
13/13 [==============================] - 0s 77us/step - loss: 0.7324 - acc: 0.3846
my accuracy 1: 0.9230769276618958
my accuracy 2: 0.9230769230769231
Epoch 4/5
13/13 [==============================] - 0s 72us/step - loss: 0.6543 - acc: 0.5385
my accuracy 1: 0.9230769276618958
my accuracy 2: 0.9230769230769231
Epoch 5/5
13/13 [==============================] - 0s 76us/step - loss: 0.6459 - acc: 0.6923
my accuracy 1: 0.8461538553237915
my accuracy 2: 0.8461538461538461



使用:Python 3.5.2,tensorflow-gpu == 1.14.0 Keras == 2.2.4 numpy == 1.15.2

最佳答案

我认为这与Dropout的用法有关。仅在训练期间启用辍学,而在评估或预测期间则不启用。因此,在训练和评估/预测过程中的准确性差异。

此外,显示在栏中的训练准确度显示了在整个训练时期的平均准确度,在每个批次之后计算出的批次准确度的平均值。请记住,每次批次后都要对模型参数进行调整,以使末尾栏中显示的精度与纪元完成后的校准精度不完全匹配(因为训练精度是根据每个模型的不同模型参数计算得出的)批次,并且使用所有批次的相同参数计算验证准确性)。

这是您的示例,具有更多数据(因此有多个纪元),并且没有丢失:

import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Dropout
from keras import callbacks

np.random.seed(1) # fix random seed for reproducibility
# Generate dummy data
x_train = np.random.random((200, 20))
y_train = np.random.randint(2, size=(200, 1))

model = Sequential()
model.add(Dense(64, input_dim=20, activation='relu'))
# model.add(Dropout(0.5))
model.add(Dense(64, activation='relu'))
# model.add(Dropout(0.5))
model.add(Dense(1, activation='sigmoid'))

model.compile(loss='binary_crossentropy',
              optimizer='rmsprop',
              metrics=['accuracy'])

class MyEval(callbacks.Callback):
    def on_epoch_end(self, epoch, logs=None):
        my_accuracy_1 = self.model.evaluate(x_train, y_train, verbose=0)[1]
        y_pred = self.model.predict(x_train)
        my_accuracy_2 = np.mean(np.equal(y_train, np.round(y_pred)))
        print("my accuracy 1 after epoch {}: {}".format(epoch + 1,my_accuracy_1))
        print("my accuracy 2 after epoch {}: {}".format(epoch + 1,my_accuracy_2))


my_eval = MyEval()

model.fit(x_train, y_train,
          epochs=5,
          batch_size=13,
          callbacks=[my_eval],
          shuffle=False)


输出为:

Train on 200 samples
Epoch 1/5
my accuracy 1 after epoch 1: 0.5450000166893005
my accuracy 2 after epoch 1: 0.545
200/200 [==============================] - 0s 2ms/sample - loss: 0.6978 - accuracy: 0.5350
Epoch 2/5
my accuracy 1 after epoch 2: 0.5600000023841858
my accuracy 2 after epoch 2: 0.56
200/200 [==============================] - 0s 383us/sample - loss: 0.6892 - accuracy: 0.5550
Epoch 3/5
my accuracy 1 after epoch 3: 0.5799999833106995
my accuracy 2 after epoch 3: 0.58
200/200 [==============================] - 0s 496us/sample - loss: 0.6844 - accuracy: 0.5800
Epoch 4/5
my accuracy 1 after epoch 4: 0.6000000238418579
my accuracy 2 after epoch 4: 0.6
200/200 [==============================] - 0s 364us/sample - loss: 0.6801 - accuracy: 0.6150
Epoch 5/5
my accuracy 1 after epoch 5: 0.6050000190734863
my accuracy 2 after epoch 5: 0.605
200/200 [==============================] - 0s 393us/sample - loss: 0.6756 - accuracy: 0.6200


纪元之后的验证准确性非常类似于现在纪元结束时的平均训练准确性。

09-11 19:36
查看更多