假设我有这个数据框:
library(ggplot2)
Y <- rnorm(100)
df <- data.frame(A = rnorm(100), B = runif(100), C = rlnorm(100),
Y = Y)
colNames <- names(df)[1:3]
for(i in colNames){
plt <- ggplot(df, aes_string(x=i, y = Y)) +
geom_point(color="#B20000", size=4, alpha=0.5) +
geom_hline(yintercept=0, size=0.06, color="black") +
geom_smooth(method=lm, alpha=0.25, color="black", fill="black")
print(plt)
Sys.sleep(2)
}
我想做一个lm模型,并为每列显示调整后的Rsq,截距,斜率和p值。我找到了一个例子
data(iris)
ggplotRegression <- function (fit) {
require(ggplot2)
ggplot(fit$model, aes_string(x = names(fit$model)[2], y = names(fit$model)[1])) +
geom_point() +
stat_smooth(method = "lm", col = "red") +
labs(title = paste("Adj R2 = ",signif(summary(fit)$adj.r.squared, 5),
"Intercept =",signif(fit$coef[[1]],5 ),
" Slope =",signif(fit$coef[[2]], 5),
" P =",signif(summary(fit)$coef[2,4], 5)))
}
fit1 <- lm(Sepal.Length ~ Petal.Width, data = iris)
ggplotRegression(fit1)
但是它仅适用于一列。
(我以this question和this one over here为例)
谢谢!
最佳答案
在上面的注释的基础上,您可以将fit放入函数中,然后使用lapply
循环遍历。
library(ggplot2)
Y <- rnorm(100)
df <- data.frame(A = rnorm(100), B = runif(100), C = rlnorm(100),
Y = Y)
colNames <- names(df)[1:3]
plot_ls <- lapply(colNames, function(x){
fit <- lm(Y ~ df[[x]], data = df)
ggplot(fit$model, aes_string(x = names(fit$model)[2], y = names(fit$model)[1])) +
geom_point() +
scale_x_continuous(x)+
stat_smooth(method = "lm", col = "red") +
ggtitle(paste("Adj R2 = ",signif(summary(fit)$adj.r.squared, 5),
"Intercept =",signif(fit$coef[[1]],5 ),
" Slope =",signif(fit$coef[[2]], 5),
" P =",signif(summary(fit)$coef[2,4], 5))
)
})
gridExtra::grid.arrange(plot_ls[[1]],plot_ls[[2]],plot_ls[[3]])
关于r - ggplot2:为多个列添加p值,Rsq和斜率,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/53121793/