我在.csv文件中有一个数据集(datatrain.csv和datatest.csv),格式如下:

Temperature(K),Pressure(ATM),CompressibilityFactor(Z)
273.1,24.675,0.806677258
313.1,24.675,0.888394713
...,...,...

并能用此代码建立回归模型和预测:
import pandas as pd
from sklearn import linear_model

dataTrain = pd.read_csv("dataTrain.csv")
dataTest = pd.read_csv("dataTest.csv")
# print df.head()

x_train = dataTrain['Temperature(K)'].reshape(-1,1)
y_train = dataTrain['CompressibilityFactor(Z)']

x_test = dataTest['Temperature(K)'].reshape(-1,1)
y_test = dataTest['CompressibilityFactor(Z)']

ols = linear_model.LinearRegression()
model = ols.fit(x_train, y_train)

print model.predict(x_test)[0:5]

然而,我想做的是多元回归。因此,模型将为CompressibilityFactor(Z) = intercept + coef*Temperature(K) + coef*Pressure(ATM)
如何在Scikit中学习?

最佳答案

如果上面的代码适用于单变量,请尝试此操作

import pandas as pd
from sklearn import linear_model

dataTrain = pd.read_csv("dataTrain.csv")
dataTest = pd.read_csv("dataTest.csv")
# print df.head()

x_train = dataTrain[['Temperature(K)', 'Pressure(ATM)']].reshape(-1,2)
y_train = dataTrain['CompressibilityFactor(Z)']

x_test = dataTest[['Temperature(K)', 'Pressure(ATM)']].reshape(-1,2)
y_test = dataTest['CompressibilityFactor(Z)']

ols = linear_model.LinearRegression()
model = ols.fit(x_train, y_train)

print model.predict(x_test)[0:5]

08-24 13:58
查看更多