我有一个嵌套的JSON,如下所示,并希望在python中解析为多个数据帧。。请帮忙
{
"tableName": "cases",
"url": "EndpointVoid",
"tableDataList": [{
"_id": "100017252700",
"title": "Test",
"type": "TECH",
"created": "2016-09-06T19:00:17.071Z",
"createdBy": "193164275",
"lastModified": "2016-10-04T21:50:49.539Z",
"lastModifiedBy": "1074113719",
"notes": [{
"id": "30",
"title": "Multiple devices",
"type": "INCCL",
"origin": "D",
"componentCode": "PD17A",
"issueCode": "IP321",
"affectedProduct": "134322",
"summary": "testing the json",
"caller": {
"email": "[email protected]",
"phone": "651-744-4522"
}
}, {
"id": "50",
"title": "EDU: Multiple Devices - Lightning-to-USB Cable",
"type": "INCCL",
"origin": "D",
"componentCode": "PD17A",
"issueCode": "IP321",
"affectedProduct": "134322",
"summary": "parsing json 2",
"caller": {
"email": "[email protected]",
"phone": "123-345-1111"
}
}],
"syncCount": 2316,
"repair": [{
"id": "D208491610",
"created": "2016-09-06T19:02:48.000Z",
"createdBy": "193164275",
"lastModified": "2016-09-21T12:49:47.000Z"
}, {
"id": "D208491610"
}, {
"id": "D208491628",
"created": "2016-09-06T19:03:37.000Z",
"createdBy": "193164275",
"lastModified": "2016-09-21T12:49:47.000Z"
}
],
"enterpriseStatus": "8"
}],
"dateTime": 1475617849,
"primaryKeys": ["$._id"],
"primaryKeyVals": ["100017252700"],
"operation": "UPDATE"
}
我想分析这个并创建3个表/dataframe/csv,如下所示。。请帮忙。。
Output table in this format
最佳答案
我不认为这是最好的办法,但我想告诉你可能性。
import pandas as pd
from pandas.io.json import json_normalize
import json
with open('your_sample.json') as f:
dt = json.load(f)
表1
df1 = json_normalize(dt, 'tableDataList', 'dateTime')[['_id', 'title', 'type', 'created', 'createdBy', 'lastModified', 'lastModifiedBy', 'dateTime']]
print df1
_id title type created createdBy \
0 100017252700 Test TECH 2016-09-06T19:00:17.071Z 193164275
lastModified lastModifiedBy dateTime
0 2016-10-04T21:50:49.539Z 1074113719 1475617849
表2
df2 = json_normalize(dt['tableDataList'], 'notes', '_id')
df2['phone'] = df2['caller'].map(lambda x: x['phone'])
df2['email'] = df2['caller'].map(lambda x: x['email'])
df2 = df2[['_id', 'id', 'title', 'email', 'phone']]
print df2
_id id title \
0 100017252700 30 Multiple devices
1 100017252700 50 EDU: Multiple Devices - Lightning-to-USB Cable
email phone
0 [email protected] 651-744-4522
1 [email protected] 123-345-1111
表3
df3 = json_normalize(dt['tableDataList'], 'repair', '_id').dropna()
print df3
created createdBy id lastModified \
0 2016-09-06T19:02:48.000Z 193164275 D208491610 2016-09-21T12:49:47.000Z
2 2016-09-06T19:03:37.000Z 193164275 D208491628 2016-09-21T12:49:47.000Z
_id
0 100017252700
2 100017252700