我有时间序列数据,如下所示:
emplvl
date
2003-01-01 10955.000000
2003-04-01 11090.333333
2003-07-01 11157.000000
2003-10-01 11335.666667
2004-01-01 11045.000000
2004-04-01 11175.666667
2004-07-01 11135.666667
2004-10-01 11480.333333
2005-01-01 11441.000000
2005-04-01 11531.000000
2005-07-01 11320.000000
2005-10-01 11516.666667
2006-01-01 11291.000000
2006-04-01 11223.000000
2006-07-01 11230.000000
2006-10-01 11293.000000
2007-01-01 11126.666667
2007-04-01 11383.666667
2007-07-01 11535.666667
2007-10-01 11567.333333
2008-01-01 11226.666667
2008-04-01 11342.000000
2008-07-01 11201.666667
2008-10-01 11321.000000
2009-01-01 11082.333333
2009-04-01 11099.000000
2009-07-01 10905.666667
我想以最简单的方式在此图上添加线性趋势(带截距)。另外,我只想以2006年之前的数据为条件来计算这种趋势。
我在这里找到了一些答案,但它们都包含
statsmodels
。首先,这些答案可能不是最新的:pandas
得到了改进,现在它本身包含OLS组件。其次,statsmodels
似乎是在每个时间段内估计单个固定效果,而不是线性趋势。我想我可以重新计算一个运行季度的变量,但是最可行的方法是这样做吗? OLS Regression Results
==============================================================================
Dep. Variable: emplvl R-squared: 1.000
Model: OLS Adj. R-squared: nan
Method: Least Squares F-statistic: 0.000
Date: tor, 14 apr 2016 Prob (F-statistic): nan
Time: 17:17:43 Log-Likelihood: 929.85
No. Observations: 40 AIC: -1780.
Df Residuals: 0 BIC: -1712.
Df Model: 39
Covariance Type: nonrobust
============================================================================================================
coef std err t P>|t| [95.0% Conf. Int.]
------------------------------------------------------------------------------------------------------------
Intercept 1.095e+04 inf 0 nan nan nan
date[T.Timestamp('2003-04-01 00:00:00')] 135.3333 inf 0 nan nan nan
date[T.Timestamp('2003-07-01 00:00:00')] 202.0000 inf 0 nan nan nan
date[T.Timestamp('2003-10-01 00:00:00')] 380.6667 inf 0 nan nan nan
date[T.Timestamp('2004-01-01 00:00:00')] 90.0000 inf 0 nan nan nan
date[T.Timestamp('2004-04-01 00:00:00')] 220.6667 inf 0 nan nan nan
如何以最简单的方式估算此趋势并将预测值作为列添加到我的数据框中?
最佳答案
这是有关如何使用pandas.ols
进行此操作的快速示例:
import matplotlib.pyplot as plt
import pandas as pd
x = pd.Series(np.arange(50))
y = pd.Series(10 + (2 * x + np.random.randint(-5, + 5, 50)))
regression = pd.ols(y=y, x=x)
regression.summary
-------------------------Summary of Regression Analysis-------------------------
Formula: Y ~ <x> + <intercept>
Number of Observations: 50
Number of Degrees of Freedom: 2
R-squared: 0.9913
Adj R-squared: 0.9911
Rmse: 2.7625
F-stat (1, 48): 5465.1446, p-value: 0.0000
Degrees of Freedom: model 1, resid 48
-----------------------Summary of Estimated Coefficients------------------------
Variable Coef Std Err t-stat p-value CI 2.5% CI 97.5%
--------------------------------------------------------------------------------
x 2.0013 0.0271 73.93 0.0000 1.9483 2.0544
intercept 9.5271 0.7698 12.38 0.0000 8.0183 11.0358
---------------------------------End of Summary---------------------------------
trend = regression.predict(beta=regression.beta, x=x[20:]) # slicing to only use last 30 points
data = pd.DataFrame(index=x, data={'y': y, 'trend': trend})
data.plot() # add kwargs for title and other layout/design aspects
plt.show() # or plt.gcf().savefig(path)
关于python - 将趋势线添加到 Pandas ,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/36627442/