我使用此代码在此值上计算高斯内核密度
from random import randint
x_grid=[]
for i in range(1000):
x_grid.append(randint(0,4))
print (x_grid)
这是计算高斯核密度的代码
from statsmodels.nonparametric.kde import KDEUnivariate
import matplotlib.pyplot as plt
def kde_statsmodels_u(x, x_grid, bandwidth=0.2, **kwargs):
"""Univariate Kernel Density Estimation with Statsmodels"""
kde = KDEUnivariate(x)
kde.fit(bw=bandwidth, **kwargs)
return kde.evaluate(x_grid)
import numpy as np
from scipy.stats.distributions import norm
# The grid we'll use for plotting
from random import randint
x_grid=[]
for i in range(1000):
x_grid.append(randint(0,4))
print (x_grid)
# Draw points from a bimodal distribution in 1D
np.random.seed(0)
x = np.concatenate([norm(-1, 1.).rvs(400),
norm(1, 0.3).rvs(100)])
pdf_true = (0.8 * norm(-1, 1).pdf(x_grid) +
0.2 * norm(1, 0.3).pdf(x_grid))
# Plot the three kernel density estimates
fig, ax = plt.subplots(1, 2, sharey=True, figsize=(13, 8))
fig.subplots_adjust(wspace=0)
pdf=kde_statsmodels_u(x, x_grid, bandwidth=0.2)
ax[0].plot(x_grid, pdf, color='blue', alpha=0.5, lw=3)
ax[0].fill(x_grid, pdf_true, ec='gray', fc='gray', alpha=0.4)
ax[0].set_title("kde_statsmodels_u")
ax[0].set_xlim(-4.5, 3.5)
plt.show()
网格中的所有值都在0到4之间。如果我收到一个新的5值,我想计算该值与平均值之间的差异,并为其分配0到1之间的一个分数(设置阈值)。
我怎样才能做到这一点?我计算高斯核密度的函数是否正确,或者有更好的方法/库来做到这一点?
*更新*
我读了一篇论文的例子。
洗衣机的重量通常为100公斤。通常,供应商也使用公斤单位来表示其容量(例如9公斤)。对于人类来说,很容易理解9 gk是容量而不是洗衣机的总重量。我们可以在没有深入的语言理解的情况下“伪造”这种形式的智力
为每个训练数据建模值的分布
属性。
对于给定的属性a(例如洗衣机的重量),令Va = {va1,va2,。 。 。 van}(| Va | = n)是对应于乘积的属性a的值的集合
在训练数据中。如果我发现一个新值v直观地讲,它接近于(
根据Va估计的分布,那么我们应该更有信心将这个值分配给(例如洗衣机的重量)。
一个想法可能是通过
新值v与Va的平均值不同,但更好的方法是在Va上建模(高斯)核密度,然后将新值v的支持表示为该点的密度:
其中σ^(2)ak是第k个高斯的方差,Z是
确保S(c.s.v,Va)∈[0,1]的常数。如何使用statsmodels库在Python中获取它?
*更新2 *
数据示例...但是我认为那不是很重要...
通过此代码生成...
from random import randint
x_grid=[]
for i in range(1000):
x_grid.append(randint(1,3))
print (x_grid)
[2、2、1、2、2、3、1、1、1、2、2、2、1、1、3、3、1、2、1、3、2、3、3、1、2 ,3、1、1、3、2、2、1、1、1、2、3、2、1、2、3、3、2、2、3、3、2、2、1、2、1 ,2、2、3、3、1、1、2、3、3、2、1、2、3、3、3、3、2、1、3、2、2、1、3、3、1 ,2、1、3、2、3、3、1、2、3、3、2、1、2、3、2、1、1、1、2、1、1、2、3、2、1、2 ,2、2、3、2、3、3、1、1、3、2、1、1、3、3、3、2、1、2、2、1、3、2、3、1、3 ,1、2、3、1、3、2、2、1、1、2、2、3、1、1、3、2、2、1、1、2、2、3、1、3、3 ,1、2、1、2、1、1、3、1、3、3、2、1、1、3、2、2、2、3、2、1、3、2、1、1、3、3 ,3、2、1、1、1、3、2、1、2、2、2、1、3、1、3、2、3、1、2、1、1、2、2、2、3、3 ,3,3,2,2,2,2,3,1,1,2,2,1,1,1,3,3,3,3,1,3,1,3,1,1,1,1,2 ,1、2、1、1、2、1、3、1、2、3、1、3、2、2、2、2、2、1、1、2、3、1、1、1、3 ,1、3、2、2、3、1、3、3、2、2、3、2、1、2、1、1、1、1、2、2、3、2、1、1、3、1 ,2、1、3、3、3、1、2、2、2、1、1、2、2、1、1、2、3、1、3、2、2、2、2、2、2、1 ,3、1、3、3、2、3、2、1、3、3、3、3、3、1、2、2、2、1、1、3、2、3、1、2、3 ,2、3、2、1、1、1、3、3、1 1、2、3、2、3、3、2、3、3、2、3、3、3、3、3、3、3、2、1、1、2、3、2、3、1 1,1,1,2,2,2,2,1,1,1,2,2,1,3,1,1,2,3,1,1,2,2,3,1,2,3,1, 2、1、3、3、2、2、3、3、3、2、1、1、2、2、3、2、3、2、1、1、1、1、2、3、1 3、3、3、2、1、2、3、1、2、1、1、2、3、3、1、1、3、2、1、3、3、2、1、1、3, 1,3,1,2,2,1,1,3,2,2,3,1,1,3,1,2,2,1,1,3,2,3,1,1,3,1,3, 1,2,1,3,2,2,2,2,1,1,3,2,1,3,3,2,3,2,1,1,3,1,2,1,2,3,2, 3、2、3、3、2、3、3、1、1、3、2、3、2、2、2、3、1、3、2、2、3、3、2、3、2, 2、2、3、3、1、3、2、3、1、1、2、1、3、1、2、2、3、3、1、3、1、1、2、2、1 3、3、3、1、2、2、2、1、3、1、2、2、2、3、3、3、1、1、2、3、3、1、1、2、3, 2、3、3、2、2、1、1、3、3、3、3、2、3、1、3、3、2、1、3、2、1、1、3、3、2、2, 2,2,1,1,1,1,1,2,3,3,3,2,1,3,1,1,1,1,1,3,1,2,3,3,3,2,3, 1、2、2、2、3、2、1、2、3、3、2、3、3、1、2、3、3、3、3、2、3、3、2、1、1、1 1、2、3、1、3、3、2、1、3、3、3、2、2、1、1、2、3、2、3、3、3、3、2、3、2、1 2,1,1,3,3,3,2,2,3 ,1、3、2、1、3、1、1、3、3、1、2、2、2、3、3、1、2、1、2、1、3、2、3、3、3 ,3、3、3、3、1、2、3、1、3、3、2、2、1、1、3、1、1、3、2、1、2、3、2、1、3、3 ,3、2、3、1、2、3、3、1、2、2、2、3、1、2、1、1、1、1、3、1、3、1、3、3、2、3 ,1、3、2、3、3、1、2、1、3、2、2、2、2、2、2、1、2、2、3、2、2、3、2、2、2 ,3、1、1、3、3、1、3、1、2、1、2、1、3、2、2、1、3、1、3、3、1、3、1、1、1 ,1、3、2、1、2、3、1、1、3、1、1、3、1、3、3、3、1、1、3、1、3、2、2、2、1 ,1、2、3、3、2、3、3、1、2、3、2、2、3、1、2、2、2、1、1、3、1、2、2、2、1 ,1、2、3、1、3、1、1、3、2、2、3、2、2、3、3、1、1、2、2、3、1、1、2、3、2 ,2、3、1、2、2、1、1、1、3、2、3、1、1、3、1、3、2、3、3、3、3、3、2、2、3、2 ,1、1、1、3、3、1、2、1、3、2、3、2、2、1、1、2、3、3、1、1、1、1、3、3、1、3 ,3、1、1、3、1、3、1、3、2、3、1、3、3、3、1、1、2、2、3、2、3、2、2、1、1、2 ,1、2、1、2、2、3、1、1、3、2、2、3、2、3、3、2、2、2、2、2、2、3、2、3、1 ,2、2、1、1、2、3、3、1、3、3、1、3、3、1、3、2、2、2、1、1、2、1、3、1、1 ,1、2、3、3、2、3、1、3]
此阵列代表了市场上新智能手机的内存。通常它们具有1,2,3 GB的内存。
那就是内核密度
*** 更新
我尝试使用此值的代码
值都以mb为单位...您认为效果很好吗?我认为我必须设定一个阈值
100% cdfv kdev
1 42 0.210097 0.499734
1024 96 0.479597 0.499983
5000 0 0.000359 0.498885
2048 36 0.181609 0.499700
3048 8 0.040299 0.499424
*更新3 *
[256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 512, 512, 512, 256, 256, 256, 512, 512, 512, 128, 128, 128, 512, 512, 512, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 2048, 2048, 2048, 1024, 1024, 1024, 512, 512, 512, 512, 512, 512, 1024, 1024, 1024, 2048, 2048, 2048, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 512, 512, 512, 128, 128, 128, 512, 512, 512, 256, 256, 256, 256, 256, 256, 1024, 1024, 1024, 512, 512, 512, 128, 128, 128, 512, 512, 512, 512, 512, 512, 1024, 1024, 1024, 1024, 1024, 1024, 4, 4, 4, 3, 3, 3, 24, 24, 24, 8, 8, 8, 16, 16, 16, 16, 16, 16, 256, 256, 256, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 1024, 1024, 1024, 1024, 1024, 1024, 512, 512, 512, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 2048, 2048, 2048, 512, 512, 512, 1024, 1024, 1024, 512, 512, 512, 1024, 1024, 1024, 2048, 2048, 2048, 2048, 2048, 2048, 512, 512, 512, 512, 512, 512, 256, 256, 256, 256, 256, 256, 256, 256, 256, 512, 512, 512, 512, 512, 512, 1024, 1024, 1024, 512, 512, 512, 512, 512, 512, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 2048, 2048, 2048, 2048, 2048, 2048, 4096, 4096, 4096, 2048, 2048, 2048, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 768, 768, 768, 768, 768, 768, 2048, 2048, 2048, 2048, 2048, 2048, 3072, 3072, 3072, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 1024, 1024, 1024, 512, 512, 512, 256, 256, 256, 512, 512, 512, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 2048, 2048, 2048, 1024, 1024, 1024, 1024, 1024, 1024, 2048, 2048, 2048, 1024, 1024, 1024, 3072, 3072, 3072, 1024, 1024, 1024, 512, 512, 512, 1024, 1024, 1024, 1024, 1024, 1024, 512, 512, 512, 2048, 2048, 2048, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 2048, 2048, 2048, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 2048, 2048, 2048, 1024, 1024, 1024, 2048, 2048, 2048, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 512, 512, 512, 1024, 1024, 1024, 512, 512, 512, 512, 512, 512, 512, 512, 512, 1024, 1024, 1024, 1024, 1024, 1024, 512, 512, 512, 1024, 1024, 1024, 512, 512, 512, 1024, 1024, 1024, 512, 512, 512, 512, 512, 512, 512, 512, 512, 256, 256, 256, 1024, 1024, 1024, 2048, 2048, 2048, 1024, 1024, 1024, 1024, 1024, 1024, 512, 512, 512, 512, 512, 512, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 2048, 2048, 2048, 1024, 1024, 1024, 2048, 2048, 2048, 1024, 1024, 1024, 512, 512, 512, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 1024, 1024, 1024, 2048, 2048, 2048, 512, 512, 512, 512, 512, 512, 1024, 1024, 1024, 1024, 1024, 1024, 512, 512, 512, 64, 64, 64, 1024, 1024, 1024, 1024, 1024, 1024, 256, 256, 256, 512, 512, 512, 512, 512, 512, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 64, 64, 64, 64, 64, 64, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 128, 128, 128, 576, 576, 576, 512, 512, 512, 1024, 1024, 1024, 512, 512, 512, 576, 576, 576, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 2048, 2048, 2048, 512, 512, 512, 2048, 2048, 2048, 768, 768, 768, 768, 768, 768, 768, 768, 768, 512, 512, 512, 192, 192, 192, 1024, 1024, 1024, 512, 512, 512, 512, 512, 512, 384, 384, 384, 448, 448, 448, 576, 576, 576, 384, 384, 384, 288, 288, 288, 768, 768, 768, 384, 384, 384, 288, 288, 288, 64, 64, 64, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 3072, 3072, 3072, 2048, 2048, 2048, 2048, 2048, 2048, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 512, 512, 512, 1024, 1024, 1024, 64, 64, 64, 128, 128, 128, 128, 128, 128, 128, 128, 128, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 256, 256, 256, 768, 768, 768, 768, 768, 768, 768, 768, 768, 256, 256, 256, 192, 192, 192, 256, 256, 256, 64, 64, 64, 256, 256, 256, 192, 192, 192, 128, 128, 128, 256, 256, 256, 192, 192, 192, 288, 288, 288, 288, 288, 288, 288, 288, 288, 288, 288, 288, 128, 128, 128, 128, 128, 128, 384, 384, 384, 512, 512, 512, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 3072, 3072, 3072, 1024, 1024, 1024, 2048, 2048, 2048, 2048, 2048, 2048, 3072, 3072, 3072, 512, 512, 512, 512, 512, 512, 512, 512, 512, 1024, 1024, 1024, 1024, 1024, 1024, 512, 512, 512, 1024, 1024, 1024, 512, 512, 512, 512, 512, 512, 512, 512, 512, 1024, 1024, 1024, 1024, 1024, 1024, 32, 32, 32, 768, 768, 768, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 2048, 2048, 2048, 1024, 1024, 1024, 2048, 2048, 2048, 3072, 3072, 3072, 2048, 2048, 2048, 1024, 1024, 1024, 2048, 2048, 2048, 1024, 1024, 1024, 2048, 2048, 2048, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 512, 512, 512, 512, 512, 512, 256, 256, 256, 512, 512, 512, 512, 512, 512, 512, 512, 512, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 128, 128, 128, 128, 128, 128, 1024, 1024, 1024, 1024, 1024, 1024, 128, 128, 128, 1024, 1024, 1024, 2048, 2048, 2048, 1024, 1024, 1024, 1024, 1024, 1024, 2048, 2048, 2048, 3072, 3072, 3072, 1024, 1024, 1024, 1024, 1024, 1024, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 2048, 2048, 2048, 1024, 1024, 1024, 2048, 2048, 2048, 1024, 1024, 1024, 1024, 1024, 1024, 512, 512, 512, 512, 512, 512, 1024, 1024, 1024, 512, 512, 512, 1024, 1024, 1024, 512, 512, 512, 512, 512, 512, 512, 512, 512, 1024, 1024, 1024, 2048, 2048, 2048, 2048, 2048, 2048, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 2048, 2048, 2048, 2048, 2048, 2048, 512, 512, 512, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 256, 256, 256, 256, 256, 256, 512, 512, 512, 512, 512, 512, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 3072, 3072, 3072, 2048, 2048, 2048, 384, 384, 384, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 1024, 1024, 1024, 2048, 2048, 2048, 1024, 1024, 1024, 3072, 3072, 3072, 3072, 3072, 3072, 3072, 3072, 3072, 128, 128, 128, 256, 256, 256, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 2048, 2048, 2048, 512, 512, 512, 1024, 1024, 1024, 1024, 1024, 1024, 2048, 2048, 2048, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 768, 768, 768, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 512, 512, 512, 1024, 1024, 1024, 128, 128, 128, 512, 512, 512, 1024, 1024, 1024, 512, 512, 512, 1024, 1024, 1024, 512, 512, 512, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 2048, 2048, 2048, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 2048, 2048, 2048, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 512, 512, 512, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 64, 64, 64, 64, 64, 64, 256, 256, 256, 512, 512, 512, 512, 512, 512, 512, 512, 512, 16, 16, 16, 3072, 3072, 3072, 3072, 3072, 3072, 256, 256, 256, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 512, 512, 512, 32, 32, 32, 1024, 1024, 1024, 1024, 1024, 1024, 256, 256, 256, 256, 256, 256, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 1024, 1024, 1024, 1024, 1024, 1024, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 1024, 1024, 1024, 512, 512, 512, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 32, 32, 32, 2048, 2048, 2048, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 2048, 2048, 2048, 512, 512, 512, 1, 1, 1, 1024, 1024, 1024, 32, 32, 32, 32, 32, 32, 45, 45, 45, 8, 8, 8, 512, 512, 512, 256, 256, 256, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 1024, 1024, 1024, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 512, 512, 512, 16, 16, 16, 4, 4, 4, 4, 4, 4, 4, 4, 4, 16, 16, 16, 16, 16, 16, 16, 16, 16, 64, 64, 64, 8, 8, 8, 8, 8, 8, 8, 8, 8, 64, 64, 64, 64, 64, 64, 256, 256, 256, 64, 64, 64, 64, 64, 64, 512, 512, 512, 512, 512, 512, 512, 512, 512, 32, 32, 32, 32, 32, 32, 32, 32, 32, 128, 128, 128, 128, 128, 128, 128, 128, 128, 32, 32, 32, 128, 128, 128, 64, 64, 64, 64, 64, 64, 16, 16, 16, 256, 256, 256, 2048, 2048, 2048, 1024, 1024, 1024, 2048, 2048, 2048, 256, 256, 256, 512, 512, 512, 1024, 1024, 1024, 512, 512, 512, 256, 256, 256, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 1024, 1024, 1024, 512, 512, 512, 512, 512, 512, 1024, 1024, 1024, 1024, 1024, 1024, 512, 512, 512, 1024, 1024, 1024, 1024, 1024, 1024, 512, 512, 512, 1024, 1024, 1024, 1024, 1024, 1024, 2048, 2048, 2048, 256, 256, 256, 256, 256, 256, 1024, 1024, 1024, 1024, 1024, 1024, 256, 256, 256, 3072, 3072, 3072, 3072, 3072, 3072, 128, 128, 128, 1024, 1024, 1024, 512, 512, 512, 512, 512, 512, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 128, 128, 128, 128, 128, 128, 64, 64, 64, 256, 256, 256, 256, 256, 256, 512, 512, 512, 768, 768, 768, 768, 768, 768, 16, 16, 16, 32, 32, 32, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 2048, 2048, 2048, 2048, 2048, 2048, 1024, 1024, 1024, 2048, 2048, 2048, 1024, 1024, 1024, 512, 512, 512, 2048, 2048, 2048, 1024, 1024, 1024, 3072, 3072, 3072, 3072, 3072, 3072, 2048, 2048, 2048, 1024, 1024, 1024, 1024, 1024, 1024, 3072, 3072, 3072, 3072, 3072, 3072, 3072, 3072, 3072, 3072, 3072, 3072, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 512, 512, 512, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 2048, 2048, 2048, 1024, 1024, 1024, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 3072, 3072, 3072, 3072, 3072, 3072, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 1024, 1024, 1024, 512, 512, 512, 64, 64, 64, 96, 96, 96, 512, 512, 512, 64, 64, 64, 64, 64, 64, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 1024, 1024, 1024, 512, 512, 512, 512, 512, 512, 1024, 1024, 1024, 512, 512, 512, 512, 512, 512, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 512, 512, 512, 512, 512, 512, 1024, 1024, 1024, 1024, 1024, 1024, 512, 512, 512, 512, 512, 512, 1024, 1024, 1024, 512, 512, 512, 1024, 1024, 1024, 1024, 1024, 1024, 512, 512, 512, 512, 512, 512, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 512, 512, 512, 512, 512, 512, 1024, 1024, 1024, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 3072, 3072, 3072, 3072, 3072, 3072, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 512, 512, 512, 1024, 1024, 1024, 2048, 2048, 2048, 1024, 1024, 1024, 1024, 1024, 1024, 512, 512, 512, 1024, 1024, 1024, 1024, 1024, 1024, 512, 512, 512, 1024, 1024, 1024, 512, 512, 512, 1024, 1024, 1024, 1024, 1024, 1024, 2048, 2048, 2048, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 2048, 2048, 2048, 64, 64, 64, 64, 64, 64, 256, 256, 256, 1024, 1024, 1024, 512, 512, 512, 256, 256, 256, 512, 512, 512, 1024, 1024, 1024, 512, 512, 512, 512, 512, 512, 1024, 1024, 1024, 1024, 1024, 1024, 2048, 2048, 2048, 2048, 2048, 2048, 512, 512, 512, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 3072, 3072, 3072, 3072, 3072, 3072, 2048, 2048, 2048, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 2048, 2048, 2048, 2048, 2048, 2048, 1024, 1024, 1024, 2048, 2048, 2048, 3072, 3072, 3072, 2048, 2048, 2048]
使用此数据,如果我尝试将其作为新值
# new values
x = np.asarray([128,512,1024,2048,3072,2800])
3072出了点问题(所有值均以MB为单位)。
结果如下:
100% cdfv kdev
128 26 0.129688 0.499376
512 55 0.275874 0.499671
1024 91 0.454159 0.499936
2048 12 0.062298 0.499150
3072 0 0.001556 0.498364
2800 1 0.004954 0.498573
我不明白为什么会这样... 3072值在数据中出现的时间很多...
这是我的数据的直方图...这很奇怪,因为3072和4096都有一些值。
最佳答案
一些一般性评论,不涉及statsmodels详细信息。
statsmodels也具有cdf内核,但我不记得它们的工作情况,也不认为它具有自动带宽选择功能。
与ali_m在评论中链接到的glen_b的答案有关:
与样本增长时的密度估计相比,cdf估计收敛到真实分布的速度要快得多。为了平衡偏差-方差折衷,我们应该为cdf内核使用较小的带宽,这相对于密度估计而言不够平滑。估算值应比相应的密度估算值更为准确。
尾部观察次数:
如果样本中最大的观察值为4,而您想知道cdf为5,则您的数据没有任何信息。对于只有很少观察值的尾部,像内核分布估计量这样的非参数估计量的方差相对而言会很大(是1e-5还是1e-20?)。
作为核密度或核分布估计的替代方法,我们可以估计尾部的帕累托分布。例如,获取最大的10%或20%的观测值并拟合帕累托分布,然后使用此分布推断出尾部密度。
有几种用于幂律估计的Python软件包,可用于此目的。
更新
下面显示了如何使用参数正态分布假设和具有固定带宽的高斯核密度估计来计算“异常”。
仅当样本来自连续分布或可以通过连续分布来近似时,这才是真正正确的。在这里,我们假装,一个只有3个不同值的样本来自正态分布。
本质上,计算出的cdf值就像距离度量,而不是离散随机变量的概率。
这将使用具有固定带宽的scipy.stats中的kde而不是statsmodels版本。
我不确定在scipy的gaussian_kde中如何设置带宽,因此,我固定的等于scale
的固定带宽选择可能是错误的。如果只有三个不同的值,而数据中没有足够的信息,我不知道如何选择带宽。默认带宽用于近似正态分布或至少单个峰值的分布。
import numpy as np
from scipy import stats
# data
ram = np.array([2, <truncated from data in description>, 3])
loc = ram.mean()
scale = ram.std()
# new values
x = np.asarray([-1, 0, 2, 3, 4, 5, 100])
# assume normal distribution
cdf_val = stats.norm.cdf(x, loc=loc, scale=scale)
cdfv = np.minimum(cdf_val, 1 - cdf_val)
# use gaussian kde but fix bandwidth
kde = stats.gaussian_kde(ram, bw_method=scale)
kde_val = np.asarray([kde.integrate_box_1d(-np.inf, xx) for xx in x])
kdev = np.minimum(kde_val, 1 - kde_val)
#print(np.column_stack((x, cdfv, kdev)))
# use pandas for prettier table
import pandas as pd
print(pd.DataFrame({'cdfv': cdfv, 'kdev': kdev}, index=x))
'''
cdfv kdev
-1 0.000096 0.000417
0 0.006171 0.021262
2 0.479955 0.482227
3 0.119854 0.199565
5 0.000143 0.000472
100 0.000000 0.000000
'''
关于python - 使用高斯核密度(Python)计算值与平均值的差异,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/30828420/