按组(group_by(id)),我试图根据types的选择求和一个变量。但是,这些types有一个优先顺序。例:

library(tidyverse)
df <- data.frame(id = c(rep(1, 6), 2, 2, 2, rep(3, 4), 4, 5),
                 types = c("1a", "1a", "2a", "3b", "4c", "7d",
                          "4c", "7d", "7d","4c", "5d", "6d", "6d","5d","7d"),
                 x = c(10, 15, 20, 15, 30, 40,
                       10, 10, 15, 10, 10, 10, 10, 10, 10),
                 y = c(1:15),
                 z = c(1:15)
)
df
#    id types  x  y  z
# 1   1    1a 10  1  1
# 2   1    1a 15  2  2
# 3   1    2a 20  3  3
# 4   1    3b 15  4  4
# 5   1    4c 30  5  5
# 6   1    7d 40  6  6
# 7   2    4c 10  7  7
# 8   2    7d 10  8  8
# 9   2    7d 15  9  9
# 10  3    4c 10 10 10
# 11  3    5d 10 11 11
# 12  3    6d 10 12 12
# 13  3    6d 10 13 13
# 14  4    5d 10 14 14
# 15  5    7d 10 15 15

我想以此顺序基于sum(x)偏好设置来types:
preference_1st = c("1a", "2a", "3b")
preference_2nd = c("7d")
preference_3rd = c("4c", "5d", "6d")

因此,这意味着,如果id包含preference_1st中的任何类型,我们将它们加总并忽略其他类型,如果preference_1st中没有任何类型,则将所有preference_2nd求和,而忽略其余的类型。最后,如果types中只有preference_3rd,则将它们加总。因此,对于id=1,我们要忽略4c7d类型。 (在此示例中,我还希望更直接地计算其他变量zy)。

所需的输出:
desired
  id sumtest ymean zmean
1  1      60   3.5   3.5
2  2      25   8.0   8.0
3  3      40  11.5  11.5
4  4      10  14.0  14.0
5  5      10  15.0  15.0

我认为一个可能的选择是使用mutatecase_when创建某种顺序变量,但是我认为if语句应该有更好的选择?以下内容很接近,但不能正确区分首选项:
df %>%
  group_by(id) %>%
  summarise(sumtest = if (any(types %in% preference_1st)) {
    sum(x)
  } else if (any(!types %in% preference_1st) & any(types %in% preference_2nd)) {
    sum(x)
  } else {
    sum(x)
  },
            ymean = mean(y),
            zmean = mean(z))
#      id sumtest ymean zmean
#   <dbl>   <dbl> <dbl> <dbl>
# 1     1     130   3.5   3.5
# 2     2      35   8     8
# 3     3      40  11.5  11.5
# 4     4      10  14    14
# 5     5      10  15    15

也开放其他方法吗?有什么建议么?

谢谢

最佳答案

这是dplyr解决方案:

df %>%
  group_by(id) %>%
  mutate(ymean = mean(y), zmean = mean(z),
         pref = 3 * types %in% preference_3rd +
                2 * types %in% preference_2nd +
                1 * types %in% preference_1st ) %>%
  filter(pref == min(pref)) %>%
  summarise(sumtest = sum(x), ymean = first(ymean), zmean = first(zmean))
#> # A tibble: 5 x 4
#>      id sumtest ymean zmean
#>   <dbl>   <dbl> <dbl> <dbl>
#> 1     1      60   3.5   3.5
#> 2     2      25   8     8
#> 3     3      40  11.5  11.5
#> 4     4      10  14    14
#> 5     5      10  15    15

关于r - dplyr使用if语句根据订单条件进行汇总,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/60672002/

10-12 19:16