我使用 tensorflow 函数py_func有效率问题。
上下文
在我的项目中,我有一批张量input_features
的张量[? max_items m]
。第一维设置为?
,因为它是动态形状(为自定义tensorflow阅读器读取批处理,并使用tf.train.shuffle_batch_join()进行混洗)。第二个维度对应一个上限(我可以在示例中使用的最大项目数),第三个维度对应于要素维度空间。我也有一个张量num_items
,它具有批量大小的维度(所以形状是(?,)
),指示示例中的项目数,其他设置为0(以numpy书写风格input_feature[k, num_items[k]:, :] = 0
)
问题
我的工作流需要一些自定义的python操作(尤其是处理索引时,我需要实例来对一些示例执行聚类操作),并且我使用了一些包裹在py_func
函数中的numpy函数。这很好用,但是训练变得非常慢(比没有py_func的模型慢50倍左右),并且函数本身并不耗时。
问题
1-此计算时间增加正常吗?包裹在py_func
中的函数为我提供了一个新的张量,该张量在此过程中进一步相乘。它可以解释计算时间吗? (我的意思是,使用这种函数计算梯度可能会更加困难)。
2-我正在尝试修改我的处理过程,并避免使用py_func
函数。但是,使用numpy索引提取数据非常方便(尤其是使用我的数据格式),并且以TF方式传递它有些困难。例如,如果我有一个带有t1
形状的张量[-1, n_max, m]
(第一维是动态的batch_size)和一个带有整数的t2
形状的[-1,2]
。是否有一种简单的方法来在tensorflow中执行均值运算,这将导致t_mean_chunk
的形状为(-1, m)
其中(以numpy公式表示):t_mean_chunk[i,:] = np.mean(t1[i, t2[i,0]:t2[i,1], :], axis=0)
?
(除其他操作外)这是我在包装函数中所做的事情。
最佳答案
如果没有确切的py_func,很难回答问题1,但是正如hpaulj在他的评论中提到的那样,它放慢了速度也就不足为奇了。作为最坏情况的后备,tf.scan
或带有tf.while_loop
的TensorArray
可能会更快一些。但是,最好的情况是使用TensorFlow ops进行矢量化解决方案,我认为在这种情况下是可行的。
至于问题2,我不确定它是否算简单,但是这是一个计算索引表达式的函数:
import tensorflow as tf
def range_mean(index_ranges, values):
"""Take the mean of `values` along ranges specified by `index_ranges`.
return[i, ...] = tf.reduce_mean(
values[i, index_ranges[i, 0]:index_ranges[i, 1], ...], axis=0)
Args:
index_ranges: An integer Tensor with shape [N x 2]
values: A Tensor with shape [N x M x ...].
Returns:
A Tensor with shape [N x ...] containing the means of `values` having
indices in the ranges specified.
"""
m_indices = tf.range(tf.shape(values)[1])[None]
# Determine which parts of `values` will be in the result
selected = tf.logical_and(tf.greater_equal(m_indices, index_ranges[:, :1]),
tf.less(m_indices, index_ranges[:, 1:]))
n_indices = tf.tile(tf.range(tf.shape(values)[0])[..., None],
[1, tf.shape(values)[1]])
segments = tf.where(selected, n_indices + 1, tf.zeros_like(n_indices))
# Throw out segment 0, since that's our "not included" segment
segment_sums = tf.unsorted_segment_sum(
data=values,
segment_ids=segments,
num_segments=tf.shape(values)[0] + 1)[1:]
divisor = tf.cast(index_ranges[:, 1] - index_ranges[:, 0],
dtype=values.dtype)
# Pad the shape of `divisor` so that it broadcasts against `segment_sums`.
divisor_shape_padded = tf.reshape(
divisor,
tf.concat([tf.shape(divisor),
tf.ones([tf.rank(values) - 2], dtype=tf.int32)], axis=0))
return segment_sums / divisor_shape_padded
用法示例:
index_range_tensor = tf.constant([[2, 4], [1, 6], [0, 3], [0, 9]])
values_tensor = tf.reshape(tf.range(4 * 10 * 5, dtype=tf.float32), [4, 10, 5])
with tf.Session():
tf_result = range_mean(index_range_tensor, values_tensor).eval()
index_range_np = index_range_tensor.eval()
values_np = values_tensor.eval()
for i in range(values_np.shape[0]):
print("Slice {}: ".format(i),
tf_result[i],
numpy.mean(values_np[i, index_range_np[i, 0]:index_range_np[i, 1], :],
axis=0))
打印:
Slice 0: [ 12.5 13.5 14.5 15.5 16.5] [ 12.5 13.5 14.5 15.5 16.5]
Slice 1: [ 65. 66. 67. 68. 69.] [ 65. 66. 67. 68. 69.]
Slice 2: [ 105. 106. 107. 108. 109.] [ 105. 106. 107. 108. 109.]
Slice 3: [ 170. 171. 172. 173. 174.] [ 170. 171. 172. 173. 174.]
关于python - tensorflow py_func很方便,但是使我的训练步骤非常缓慢。,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/42927920/