我基于以下结构编写了一些常用功能来管理串行端口:
typedef struct
{
int PHandle;
unsigned int Port;
unsigned int BaudRate;
unsigned char Parity;
unsigned char FlowControl;
char Device[MAX_SIZE];
} Tst_SPort;
我正在另一个文件中调用这些函数(请参见下文),以测试RS232串行端口。需要启用流控制。
int iInit(Tst_SPort *port, const char *device, int baudRate, unsigned char parity, unsigned char flowControl)
{
strncpy(port->Device, device, MAX_SIZE);
port->PHandle = iOpen(port);
port->Port = -1;
port->BaudRate = baudRate;
port->Parity = parity;
port->FlowControl = flowControl;
if(port->PHandle > 0)
{
setuart(port, port->BaudRate);
}
return port->PHandle;
}
int iOpen(Tst_SPort *port)
{
port->PHandle = open(port->Device, O_RDWR | O_NOCTTY);
if(port->PHandle < 0)
{
perror("open:");
return (-1);
}
return (port->PHandle);
}
void setuart(Tst_SPort *port, int baudRate)
{
struct termios opt, optCmp;
struct serial_struct info;
if(port->PHandle > 0)
{
bzero(&opt, sizeof(opt));
bzero(&optCmp, sizeof(optCmp));
if(ioctl(port->PHandle, TIOCGSERIAL, &info) == 0)
port->Port = info.port;
fcntl(port->PHandle, F_SETFL, O_NONBLOCK);
if (tcgetattr(port->PHandle, &opt) < 0)
perror("tcgetattr Get:");
if(baudRate > 0)
{
cfsetospeed (&opt, baudRate);
cfsetispeed (&opt, baudRate);
}
opt.c_iflag = IGNPAR;
opt.c_oflag &= ~OPOST
opt.c_oflag &= ~ONLCR;
opt.c_lflag = 0;
opt.c_cflag |= (CLOCAL | CREAD);
opt.c_cflag &= ~(PARENB | PARODD);
opt.c_cflag |= port->Parity;
opt.c_cflag &= ~CSTOPB;
opt.c_cflag &= ~CSIZE;
opt.c_cflag |= CS8;
if(!port->FlowControl)
opt.c_cflag &= ~CRTSCTS;
else
opt.c_cflag |= CRTSCTS;
opt.c_cc[VMIN] = 0;
opt.c_cc[VTIME] = 50;
if(tcsetattr(opt->PHandle, TCSANOW, &opt) < 0)
perror("tcgetattr Update :");
if (tcgetattr(opt->PHandle, &optCmp) < 0)
perror("tcgetattr Read:");
/* Compare */
if (memcmp((void *)&opt, (void *)&optCmp, sizeof(opt)) != 0)
printf("Conf failed");
tcflush(port->PHandle, TCIFLUSH);
}
}
int iRead(Tst_SPort *port, char *buffer, unsigned long buffLength)
{
struct timeval tv;
fd_set recv;
int s32Read = 0;
int s32Offset = 0;
int s32SRes = 0;
tv.tv_sec = 0;
tv.tv_usec = 100000; /* 100ms */
if ((port) && (port->PHandle > 0))
{
while (s32Offset < buffLength)
{
FD_ZERO(&recv);
FD_SET(port->PHandle, &recv);
s32SRes = select(port->PHandle + 1, &recv, NULL, NULL, &tv);
if ((s32SRes == -1) && (errno == EINTR))
{
continue;
}
else if(s32SRes > 0)
{
if (FD_ISSET(port->PHandle, &recv))
{
s32Read = read(port->PHandle, buffer + s32Offset, buffLength - s32Offset);
if(s32Read > 0)
{
tv.tv_sec = 0;
tv.tv_usec = 5000;
s32Offset += s32Read;
continue;
}
}
}
break;
}
}
return s32Offset;
}
int iClose(Tst_SPort *port)
{
return (close(port->Phandle));
}
为了验证实现,引脚Tx和Rx已连接在一起,同上,适用于CTS和RTS。一切正常,发送的消息可以正确阅读。此外,当Tx与Rx断开连接时,没有读取任何内容。
但是,当将CTS从RTS上拔下时,端口关闭步骤(约20秒)后,测试块将停止。
但是,如果使用flowControl == 0调用了setuart()函数,则测试不会阻塞并立即返回预期的错误代码。
我可能对一些错误的理解,尤其是在端口配置中。这是个好方法吗?
最佳答案
您面临的问题是正确的行为。
在启用流量控制的情况下,保持CTS处于未连接状态,这意味着DTE(AKA PC)无法将数据发送到DCE(从设备)。
当您尝试写入UART输出缓冲区时,它可能已满,并且应用程序暂时停止运行,并等待直到一些缓冲区可用。
关于c - 在启用了流控制的Linux上进行串行通信-不良行为,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/37346287/