我已经看过并尝试过如何在流中求和的各种不同实现。这是我的代码:
List<Person> persons = new ArrayList<Person>();
for(int i=0; i < 10000000; i++){
persons.add(new Person("random", 26));
}
Long start = System.currentTimeMillis();
int test = persons.stream().collect(Collectors.summingInt(p -> p.getAge()));
Long end = System.currentTimeMillis();
System.out.println("Sum of ages = " + test + " and it took : " + (end - start) + " ms with collectors");
Long start3 = System.currentTimeMillis();
int test3 = persons.parallelStream().collect(Collectors.summingInt(p -> p.getAge()));
Long end3 = System.currentTimeMillis();
System.out.println("Sum of ages = " + test3 + " and it took : " + (end3 - start3) + " ms with collectors and parallel stream");
Long start2 = System.currentTimeMillis();
int test2 = persons.stream().mapToInt(p -> p.getAge()).sum();
Long end2 = System.currentTimeMillis();
System.out.println("Sum of ages = " + test2 + " and it took : " + (end2 - start2) + " ms with map and sum");
Long start4 = System.currentTimeMillis();
int test4 = persons.parallelStream().mapToInt(p -> p.getAge()).sum();
Long end4 = System.currentTimeMillis();
System.out.println("Sum of ages = " + test4 + " and it took : " + (end4 - start4) + " ms with map and sum and parallel stream");
这给了我以下结果:
Sum of ages = 220000000 and it took : 110 ms with collectors
Sum of ages = 220000000 and it took : 272 ms with collectors and parallel stream
Sum of ages = 220000000 and it took : 137 ms with map and sum
Sum of ages = 220000000 and it took : 134 ms with map and sum and parallel stream
我尝试了几次,每次都给我不同的结果(大多数情况下,最后一个解决方案是最好的),所以我想知道:
1)正确的方法是什么?
2)为什么呢? (与其他解决方案有什么区别?)
最佳答案
在我们获得实际答案之前,您应该了解以下几点:
Sum of ages = 260000000 and it took : 94 ms with collectors
Sum of ages = 260000000 and it took : 61 ms with collectors and parallel stream
Sum of ages = 260000000 and it took : 70 ms with map and sum
Sum of ages = 260000000 and it took : 94 ms with map and sum and parallel stream
然后在以后的运行中:
Sum of ages = 260000000 and it took : 68 ms with collectors
Sum of ages = 260000000 and it took : 67 ms with collectors and parallel stream
Sum of ages = 260000000 and it took : 66 ms with map and sum
Sum of ages = 260000000 and it took : 109 ms with map and sum and parallel stream
System.currentTimeMillies()
将无法可靠地工作。 好的,现在让我们看看您使用的各种方法。
summingInt
收集器具有以下实现:public static <T> Collector<T, ?, Integer> summingInt(ToIntFunction<? super T> mapper) {
return new CollectorImpl<>(
() -> new int[1],
(a, t) -> { a[0] += mapper.applyAsInt(t); },
(a, b) -> { a[0] += b[0]; return a; },
a -> a[0], Collections.emptySet());
}
因此,首先将创建一个具有一个元素的新数组。然后,对于流中的每个
Person
元素,collect
函数将使用Person#getAge()
函数将年龄作为Integer
(而不是int
!)检索,并将该年龄添加到先前的年龄(在1D数组中)。最后,在处理完所有流之后,它将从该数组中提取值并将其返回。因此,这里有很多自动装箱和-unboxing操作。 ReferencePipeline#forEach(Consumer)
函数来累积从映射函数获得的年龄。再次有很多自动装箱和-unboxing。 Stream<Person>
映射到IntStream
。这意味着一件事是,不再需要自动装箱或-unboxing;在某些情况下,这可以节省大量时间。然后使用以下实现对结果流求和:@Override
public final int sum() {
return reduce(0, Integer::sum);
}
此处的
reduce
函数将调用ReduceOps#ReduceOp#evaluateSequential(PipelineHelper<T> helper, Spliterator<P_IN> spliterator)
。本质上,这将对所有数字使用
Integer::sum
函数,从0和第一个数字开始,然后从第二个数字开始,以此类推。 sum()
函数,但是在这种情况下,reduce将调用ReduceOps#ReduceOp#evaluateParallel(PipelineHelper<T> helper, Spliterator<P_IN> spliterator)
而不是顺序选项。基本上,这将使用分而治之的方法将这些值相加。现在,分而治之的最大优势当然是可以轻松并行完成。但是,它确实需要多次拆分和重新加入流,这会浪费时间。因此,取决于与元素相关的实际任务的复杂性,它的运行速度可能会有很大差异。在添加的情况下,在大多数情况下可能不值得。从我的结果可以看出,它始终是较慢的方法之一。 现在,要真正了解需要花多长时间,让我们做一个适当的微型基准测试。我将使用带有以下基准代码的JMH:
package com.stackoverflow.user2352924;
import org.openjdk.jmh.annotations.*;
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.TimeUnit;
import java.util.stream.Collectors;
@BenchmarkMode(Mode.Throughput)
@OutputTimeUnit(TimeUnit.MINUTES)
@Warmup(iterations = 5, time = 5, timeUnit = TimeUnit.SECONDS)
@Measurement(iterations = 10, time = 10, timeUnit = TimeUnit.SECONDS)
@State(Scope.Benchmark)
@Fork(1)
@Threads(2)
public class MicroBenchmark {
private static List<Person> persons = new ArrayList<>();
private int test;
static {
for(int i=0; i < 10000000; i++){
persons.add(new Person("random", 26));
}
}
@Benchmark
public void sequentialCollectors() {
test = 0;
test += persons.stream().collect(Collectors.summingInt(p -> p.getAge()));
}
@Benchmark
public void parallelCollectors() {
test = 0;
test += persons.parallelStream().collect(Collectors.summingInt(p -> p.getAge()));
}
@Benchmark
public void sequentialMapSum() {
test = 0;
test += persons.stream().mapToInt(p -> p.getAge()).sum();
}
@Benchmark
public void parallelMapSum() {
test = 0;
test += persons.parallelStream().mapToInt(p -> p.getAge()).sum();
}
}
这个Maven项目的
pom.xml
看起来像这样:<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.stackoverflow.user2352924</groupId>
<artifactId>StackOverflow</artifactId>
<version>1.0</version>
<packaging>jar</packaging>
<name>Auto-generated JMH benchmark</name>
<prerequisites>
<maven>3.0</maven>
</prerequisites>
<dependencies>
<dependency>
<groupId>org.openjdk.jmh</groupId>
<artifactId>jmh-core</artifactId>
<version>${jmh.version}</version>
</dependency>
<dependency>
<groupId>org.openjdk.jmh</groupId>
<artifactId>jmh-generator-annprocess</artifactId>
<version>${jmh.version}</version>
<scope>provided</scope>
</dependency>
</dependencies>
<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<jmh.version>0.9.5</jmh.version>
<javac.target>1.8</javac.target>
<uberjar.name>benchmarks</uberjar.name>
</properties>
<build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.1</version>
<configuration>
<compilerVersion>${javac.target}</compilerVersion>
<source>${javac.target}</source>
<target>${javac.target}</target>
</configuration>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-shade-plugin</artifactId>
<version>2.2</version>
<executions>
<execution>
<phase>package</phase>
<goals>
<goal>shade</goal>
</goals>
<configuration>
<finalName>microbenchmarks</finalName>
<transformers>
<transformer implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">
<mainClass>org.openjdk.jmh.Main</mainClass>
</transformer>
</transformers>
</configuration>
</execution>
</executions>
</plugin>
</plugins>
<pluginManagement>
<plugins>
<plugin>
<artifactId>maven-clean-plugin</artifactId>
<version>2.5</version>
</plugin>
<plugin>
<artifactId>maven-deploy-plugin</artifactId>
<version>2.8.1</version>
</plugin>
<plugin>
<artifactId>maven-install-plugin</artifactId>
<version>2.5.1</version>
</plugin>
<plugin>
<artifactId>maven-jar-plugin</artifactId>
<version>2.4</version>
</plugin>
<plugin>
<artifactId>maven-javadoc-plugin</artifactId>
<version>2.9.1</version>
</plugin>
<plugin>
<artifactId>maven-resources-plugin</artifactId>
<version>2.6</version>
</plugin>
<plugin>
<artifactId>maven-site-plugin</artifactId>
<version>3.3</version>
</plugin>
<plugin>
<artifactId>maven-source-plugin</artifactId>
<version>2.2.1</version>
</plugin>
<plugin>
<artifactId>maven-surefire-plugin</artifactId>
<version>2.17</version>
</plugin>
</plugins>
</pluginManagement>
</build>
</project>
确保Maven也与Java 8一起运行,否则您将收到难看的错误。
在这里我不会详细介绍如何使用JMH(在其他地方也可以使用),但这是我得到的结果:
# Run complete. Total time: 00:08:48
Benchmark Mode Samples Score Score error Units
c.s.u.MicroBenchmark.parallelCollectors thrpt 10 3658,949 775,115 ops/min
c.s.u.MicroBenchmark.parallelMapSum thrpt 10 2616,905 221,109 ops/min
c.s.u.MicroBenchmark.sequentialCollectors thrpt 10 5502,160 439,024 ops/min
c.s.u.MicroBenchmark.sequentialMapSum thrpt 10 6120,162 609,232 ops/min
因此,在我运行这些测试时,在我的系统上,顺序映射总和要快得多,在并行映射总和(使用分治法)仅可以完成2600多次的同时,可以完成6100多次操作实际上,顺序方法都比并行方法快得多。
现在,在可以更轻松地并行运行的情况下-例如
Person#getAge()
函数比 getter 要复杂得多-并行方法可能是更好的解决方案。最后,这完全取决于被测试案例中并行运行的效率。要记住的另一件事:如果有疑问,请执行适当的微观基准测试。 ;-)