我有一个代码可以在图像中绘制对象的轮廓,然后在它们周围绘制一个矩形。我需要找到形状最大的直径(两点),女巫是水平的直线。现在,我需要找到对象边界内的点(像素的坐标)。

这是我的代码:

python - 查找轮廓和边界以获取图像OpenCV Python中的点-LMLPHP

class App:
    def __init__(self, window, window_title, image_path="ex.jpg"):
        self.window = window
        self.window.title(window_title)

        # Load an image using OpenCV
        self.cv_img = cv2.cvtColor(cv2.imread(image_path), cv2.COLOR_BGR2RGB)

        # Get the image dimensions (OpenCV stores image data as NumPy ndarray)
        self.height, self.width, no_channels = self.cv_img.shape

        # Create a canvas that can fit the above image
        self.canvas = tkinter.Canvas(window, width = self.width, height = self.height)
        self.canvas.pack()

        # Use PIL (Pillow) to convert the NumPy ndarray to a PhotoImage
        self.photo = PIL.ImageTk.PhotoImage(image = PIL.Image.fromarray(self.cv_img))

        # Add a PhotoImage to the Canvas
        self.canvas.create_image(0, 0, image=self.photo, anchor=tkinter.NW)

        # Button that lets the user blur the image
        self.btn_blur=tkinter.Button(window, text="Blur", width=25, command=self.blur_image)
        self.btn_blur.pack(anchor=tkinter.CENTER, expand=True)

        # Button that lets the user edeged the image
        self.btn_blur=tkinter.Button(window, text="edged", width=25, command=self.edged_image)
        self.btn_blur.pack(anchor=tkinter.CENTER, expand=True)

        # Button that lets the user edeged the image
        self.btn_blur=tkinter.Button(window, text="draw box", width=25, command=self.draw_box)
        self.btn_blur.pack(anchor=tkinter.CENTER, expand=True)

        self.window.mainloop()

    # Callback for the "Blur" button
    def blur_image(self):
        self.cv_img = cv2.blur(self.cv_img, (3, 3))
        self.photo = PIL.ImageTk.PhotoImage(image = PIL.Image.fromarray(self.cv_img))
        self.canvas.create_image(0, 0, image=self.photo, anchor=tkinter.NW)

    # Callback for the "edged" button
    def edged_image(self):
        #edeged image
        self.cv_img=cv2.Canny(self.cv_img,50,180)
        self.cv_img = cv2.dilate(self.cv_img, None, iterations=1)
        self.cv_img = cv2.erode(self.cv_img, None, iterations=1)
        self.photo = PIL.ImageTk.PhotoImage(image = PIL.Image.fromarray(self.cv_img))
        self.canvas.create_image(0, 0, image=self.photo, anchor=tkinter.NW)

    # Callback for the "draw contours" button
    def draw_box(self):
        #draw contour
        cnts = cv2.findContours(self.cv_img.copy(), cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
        cnts = cnts[0] if imutils.is_cv2() else cnts[1]
        #draw box
        for c in cnts:
            self.cv_img = cv2.drawContours(self.cv_img, [c], 0, (0,255,0), 3)
            x,y,w,h = cv2.boundingRect(c)
            self.cv_img = cv2.rectangle(self.cv_img,(x,y),(x+w,y+h),(0,255,0),2)

#Create a window and pass it to the Application object
App(tkinter.Tk(), "morteza app")

最佳答案

您可以尝试找到极端点(在您的情况下为左,右和顶部)。然后,可以使用计算两个点之间的距离的公式d = sqrt((x2-x1)^ 2 +(y2-y1)^ 2)计算从最左端到最右端的距离。如果您希望使用相同的原理,甚至可以找到线的中心并计算线的中心与最高点之间的距离。这是一个示例代码:

import numpy as np
import cv2
import imutils

img = cv2.imread('bulb.png')


gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(gray, 240, 255, cv2.THRESH_BINARY)
cv2.bitwise_not(thresh, thresh)

cnts = cv2.findContours(thresh, cv2.RETR_EXTERNAL,
                cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if imutils.is_cv2() else cnts[1]
c = max(cnts, key=cv2.contourArea)

left = tuple(c[c[:, :, 0].argmin()][0])
right = tuple(c[c[:, :, 0].argmax()][0])

distance = np.sqrt( (right[0] - left[0])**2 + (right[1] - left[1])**2 )

x,y,w,h = cv2.boundingRect(c)

centx = np.sqrt( ((right[0] + left[0])**2)/4)
centy = np.sqrt( ((right[1] + left[1])**2)/4 )
print(centx, centy)

font = cv2.FONT_HERSHEY_SIMPLEX
cv2.circle(img, left, 5, (0, 0, 255), -1)
cv2.circle(img, right, 5, (0, 0, 255), -1)
cv2.circle(img, (int(centx), int(centy)), 5, (0, 0, 255), -1)
cv2.line(img, left, right, (255,0,0), 2)
cv2.drawContours(img, [c], -1, (0,255,0), 2)
cv2.rectangle(img,(x,y),(x+w,y+h),(0,255,0),2)
cv2.putText(img,'Distance: '+str(distance),(10,30), font, 1, (0,0,0),2, cv2.LINE_AA)
cv2.imshow('img', img)
cv2.imwrite('bulbresult.png', img)


结果:

python - 查找轮廓和边界以获取图像OpenCV Python中的点-LMLPHP

关于python - 查找轮廓和边界以获取图像OpenCV Python中的点,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/51000056/

10-12 23:09