我有一个300万行的.txt文件。文件包含如下所示的数据:
# RSYNC: 0 1 1 0 512 0
#$SOA 5m localhost. hostmaster.localhost. 1906022338 1h 10m 5d 1s
# random_number_ofspaces_before_this text $TTL 60s
#more random information
:127.0.1.2:https://www.spamhaus.org/query/domain/$
test
:127.0.1.2:https://www.spamhaus.org/query/domain/$
.0-0m5tk.com
.0-1-hub.com
.zzzy1129.cn
:127.0.1.4:https://www.spamhaus.org/query/domain/$
.0-il.ml
.005verf-desj.com
.01accesfunds.com
我试图将其解析为:
+--------------------+--------------+-------------+-----------------------------------------------------+
| domain_name | period_count | parsed_code | raw_code |
+--------------------+--------------+-------------+-----------------------------------------------------+
| test | 0 | 127.0.1.2 | :127.0.1.2:https://www.spamhaus.org/query/domain/$ |
| .0-0m5tk.com | 2 | 127.0.1.2 | :127.0.1.2:https://www.spamhaus.org/query/domain/$ |
| .0-1-hub.com | 2 | 127.0.1.2 | :127.0.1.2:https://www.spamhaus.org/query/domain/$ |
| .zzzy1129.cn | 2 | 127.0.1.2 | :127.0.1.2:https://www.spamhaus.org/query/domain/$ |
| .0-il.ml | 2 | 127.0.1.4 | :127.0.1.4:https://www.spamhaus.org/query/domain/$ |
| .005verf-desj.com | 2 | 127.0.1.4 | :127.0.1.4:https://www.spamhaus.org/query/domain/$ |
| .01accesfunds.com | 2 | 127.0.1.4 | :127.0.1.4:https://www.spamhaus.org/query/domain/$ |
+--------------------+--------------+-------------+-----------------------------------------------------+
为此,我提出了以下建议:
rows = []
raw_code = None
parsed_code = None
with open('dbl-sr-2019-06-02T23_38_27Z.txt', 'r') as f: # assumes the file name is input.txt
for line in f:
line = line.rstrip('\n')
if line.startswith(':127'):
raw_code = line
parsed_code = re.split(":", line)[1]
continue
if line.startswith('#'):
continue
rows.append((line, parsed_code))
# rows.append((raw_code))
# rows.extend((line, parsed_code, raw_code))
# rows.extend((raw_code))
import pandas as pd
df = pd.DataFrame(rows, columns=['domain_name', "parsed_code" 'raw_spamhaus_return_code'])
print(df)
上面代码块中注释掉的行要么没有产生我想要的输出,要么给出了一个错误。我正在努力构建一个超过2列的Pandas数据框架。我可以得到
domain_name
和另一列。似乎我无法将代码降下来以正确使用.append
和.extend
函数。有人能提供指导吗? 最佳答案
你的问题可能是缺少逗号。
这:
df = pd.DataFrame(rows, columns=[
'domain_name', 'parsed_code', 'raw_spamhaus_return_code'])
不同于:
df = pd.DataFrame(rows, columns=[
'domain_name', "parsed_code" 'raw_spamhaus_return_code'])
因为(请注意缺少的逗号):
"parsed_code" 'raw_spamhaus_return_code'
变成一条线。
测试代码:
import re
data = [x.strip() for x in """
# RSYNC: 0 1 1 0 512 0
#$SOA 5m localhost. hostmaster.localhost. 1906022338 1h 10m 5d 1s
# random_number_ofspaces_before_this text $TTL 60s
#more random information
:127.0.1.2:https://www.spamhaus.org/query/domain/$
test
:127.0.1.2:https://www.spamhaus.org/query/domain/$
.0-0m5tk.com
.0-1-hub.com
.zzzy1129.cn
:127.0.1.4:https://www.spamhaus.org/query/domain/$
.0-il.ml
.005verf-desj.com
.01accesfunds.com
""".split('\n')[1:-1]]
rows = []
raw_code = None
parsed_code = None
for line in data:
line = line.rstrip('\n')
if line.startswith(':127'):
raw_code = line
parsed_code = re.split(":", line)[1]
continue
if line.startswith('#'):
continue
rows.append((line, line.count('.'), parsed_code, raw_code))
import pandas as pd
df = pd.DataFrame(rows, columns=[
'domain_name', 'period_count ', 'parsed_code',
'raw_spamhaus_return_code'])
print(df)
结果:
domain_name period_count parsed_code \
0 test 0 127.0.1.2
1 .0-0m5tk.com 2 127.0.1.2
2 .0-1-hub.com 2 127.0.1.2
3 .zzzy1129.cn 2 127.0.1.2
4 .0-il.ml 2 127.0.1.4
5 .005verf-desj.com 2 127.0.1.4
6 .01accesfunds.com 2 127.0.1.4
raw_spamhaus_return_code
0 :127.0.1.2:https://www.spamhaus.org/query/doma...
1 :127.0.1.2:https://www.spamhaus.org/query/doma...
2 :127.0.1.2:https://www.spamhaus.org/query/doma...
3 :127.0.1.2:https://www.spamhaus.org/query/doma...
4 :127.0.1.4:https://www.spamhaus.org/query/doma...
5 :127.0.1.4:https://www.spamhaus.org/query/doma...
6 :127.0.1.4:https://www.spamhaus.org/query/doma...
关于python - Python:append()和extend(),我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/56981256/