我有一个看起来像这样的数据集-

     yyyy      month        tmax         tmin
0    1908    January         5.0         -1.4
1    1908   February         7.3          1.9
2    1908      March         6.2          0.3
3    1908      April         7.4          2.1
4    1908        May        16.5          7.7
5    1908       June        17.7          8.7
6    1908       July        20.1         11.0
7    1908     August        17.5          9.7
8    1908  September        16.3          8.4
9    1908    October        14.6          8.0
10   1908   November         9.6          3.4
11   1908   December         5.8         -0.3
12   1909    January         5.0          0.1
13   1909   February         5.5         -0.3
14   1909      March         5.6         -0.3
15   1909      April        12.2          3.3
16   1909        May        14.7          4.8
17   1909       June        15.0          7.5
18   1909       July        17.3         10.8
19   1909     August        18.8         10.7
20   1909  September        14.5          8.1
21   1909    October        12.9          6.9
22   1909   November         7.5          1.7
23   1909   December         5.3          0.4
24   1910    January         5.2         -0.5
...

它具有四个变量-yyyymonthtmax(最高温度)和tmin
我想在预测时将月份列用作变量,因此要将其转换为二进制编码版本。本质上,我想在名为January的数据集中添加十二个变量,直到December为止,如果特定行的月份为“January”,则应将January列标记为1,其余11列新添加的列应为0

我查看了数据透视表,但这对我的事业没有帮助。关于如何以简单优雅的方式执行此操作的任何想法?

最佳答案

我认为您需要 get_dummies :

df = pd.get_dummies(df['month'])

如果需要在原始列中添加新列并删除month,请使用 join pop :
df2 = df.join(pd.get_dummies(df.pop('month')))
print (df2.head())
   yyyy  tmax  tmin  April  August  December  February  January  July  June  \
0  1908   5.0  -1.4      0       0         0         0        1     0     0
1  1908   7.3   1.9      0       0         0         1        0     0     0
2  1908   6.2   0.3      0       0         0         0        0     0     0
3  1908   7.4   2.1      1       0         0         0        0     0     0
4  1908  16.5   7.7      0       0         0         0        0     0     0

   March  May  November  October  September
0      0    0         0        0          0
1      0    0         0        0          0
2      1    0         0        0          0
3      0    0         0        0          0
4      0    1         0        0          0

如果不需要删除列month:
df2 = df.join(pd.get_dummies(df['month']))
print (df2.head())
   yyyy     month  tmax  tmin  April  August  December  February  January  \
0  1908   January   5.0  -1.4      0       0         0         0        1
1  1908  February   7.3   1.9      0       0         0         1        0
2  1908     March   6.2   0.3      0       0         0         0        0
3  1908     April   7.4   2.1      1       0         0         0        0
4  1908       May  16.5   7.7      0       0         0         0        0

   July  June  March  May  November  October  September
0     0     0      0    0         0        0          0
1     0     0      0    0         0        0          0
2     0     0      1    0         0        0          0
3     0     0      0    0         0        0          0
4     0     0      0    1         0        0          0

如果需要排序列,则有更多可能的解决方案-使用 reindex reindex_axis :
months = ['January', 'February', 'March','April' ,'May',  'June', 'July', 'August', 'September','October', 'November','December']
df1 = pd.get_dummies(df['month']).reindex_axis(months, 1)
print (df1.head())
   January  February  March  April  May  June  July  August  September  \
0        1         0      0      0    0     0     0       0          0
1        0         1      0      0    0     0     0       0          0
2        0         0      1      0    0     0     0       0          0
3        0         0      0      1    0     0     0       0          0
4        0         0      0      0    1     0     0       0          0

   October  November  December
0        0         0         0
1        0         0         0
2        0         0         0
3        0         0         0
4        0         0         0

df1 = pd.get_dummies(df['month']).reindex(columns=months)
print (df1.head())
   January  February  March  April  May  June  July  August  September  \
0        1         0      0      0    0     0     0       0          0
1        0         1      0      0    0     0     0       0          0
2        0         0      1      0    0     0     0       0          0
3        0         0      0      1    0     0     0       0          0
4        0         0      0      0    1     0     0       0          0

   October  November  December
0        0         0         0
1        0         0         0
2        0         0         0
3        0         0         0
4        0         0         0

或将month列转换为ordered categorical:
df1 = pd.get_dummies(df['month'].astype('category', categories=months, ordered=True))
print (df1.head())
   January  February  March  April  May  June  July  August  September  \
0        1         0      0      0    0     0     0       0          0
1        0         1      0      0    0     0     0       0          0
2        0         0      1      0    0     0     0       0          0
3        0         0      0      1    0     0     0       0          0
4        0         0      0      0    1     0     0       0          0

   October  November  December
0        0         0         0
1        0         0         0
2        0         0         0
3        0         0         0
4        0         0         0

关于python - Pandas -将分类列转换为二进制编码形式,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/45416212/

10-16 08:46