metrics.r2_score和acccuracy_score在计算机器学习模型中的准确性上有什么区别。
当我尝试这个:
from sklearn import metrics
from sklearn.metrics import accuracy_score
print("Accuracy = ", 1 - metrics.r2_score(y_test,y_pred))
print("Accuracy1 = ", accuracy_score(y_test,y_pred))
我得到这个:
Accuracy = 0.9871059362722768
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-16-d19d2fd401dc> in <module>
2 from sklearn.metrics import accuracy_score
3 print("Accuracy = ", 1 - metrics.r2_score(y_test,y_pred))
----> 4 print("Accuracy1 = ", accuracy_score(y_test,y_pred))
~/anaconda3/lib/python3.7/site-packages/sklearn/metrics/classification.py in
accuracy_score(y_true, y_pred, normalize, sample_weight)
174
175 # Compute accuracy for each possible representation
--> 176 y_type, y_true, y_pred = _check_targets(y_true, y_pred)
177 check_consistent_length(y_true, y_pred, sample_weight)
178 if y_type.startswith('multilabel'):
~/anaconda3/lib/python3.7/site-packages/sklearn/metrics/classification.py in
_check_targets(y_true, y_pred)
86 # No metrics support "multiclass-multioutput" format
87 if (y_type not in ["binary", "multiclass", "multilabel-indicator"]):
---> 88 raise ValueError("{0} is not supported".format(y_type))
89
90 if y_type in ["binary", "multiclass"]:
ValueError: continuous is not supported
最佳答案
准确度分数用于分类问题:
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html#sklearn.metrics.accuracy_score
这是您收到错误的方式:不支持连续
输入为:
Parameters:
y_true : 1d array-like, or label indicator array / sparse matrix
Ground truth (correct) labels.
y_pred : 1d array-like, or label indicator array / sparse matrix
Predicted labels, as returned by a classifier.
R2.score用于连续变量,因此用于回归问题:https://scikit-learn.org/stable/modules/generated/sklearn.metrics.r2_score.html
关于python - metrics.r2_score和acccuracy_score有什么区别,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/58163026/