我有一个字符串s包含不同类型的括号:()[]如何在这种类型的字符串与最小可能的反转数之间进行平衡?我可以把任何支架换成其他的。
例如:[)(]的成本是2,它变为[()][]((的成本为1,它变为[]()[(])不平衡。
更复杂的例子是:)[)([)())]可以在4个更改中转换为([])[(())],但也可以在3个步骤中转换为[()(()())],这是使其平衡的最少修改次数。
我怎样才能解决这个问题?

最佳答案

我提出的第一个方法是动态编程。
O(n^3)为要将match(i, j)s[i]设为s[j]()所需的替换数因此[]可以是match(i, j)01
考虑2。现在您将dp[i][j] = the minimum cost to balance the subsequence from i to j in your brackets array定义为:

dp[i][i + 1] = match(i, i + 1)

现在的一般规则是,对于任何dp[i][i + 1],我们取dp[i + 1][j - 1] + match(i, j)min(dp[i][j], dp[i][p] + dp[p + 1][j])之间的总最小值。显然,结果将保存在i < p < j中有一个C++解决方案(我还将在15分钟内上传一个Python程序,当我完成它时——Python:P不那么强大)。
#include <iostream>
#include <string>
using namespace std;

int dp[100][100];
string s;
int n;

int match(char a, char b) {
    if (a == '(' && b == ')') {
        return 0;
    }
    if (a == '[' && b == ']') {
        return 0;
    }
    if ((a == ')' || a == ']') && (b == '(' || b == '[')) {
        return 2;
    }
    return 1;
}

int main() {
    cin >> s;
    n = s.length();
    s = " " + s;
    for (int i = 0; i <= n; ++i) {
        for (int j = 0; j <= n; ++j) {
            dp[i][j] = 0x3f3f3f3f;
        }
    }

    for (int i = 1; i < n; ++i) {
        dp[i][i + 1] = match(s[i], s[i + 1]);
    }

    for (int k = 3; k <= n; k += 2) {
        for (int i = 1; i + k <= n; ++i) {
            int j = i + k;
            dp[i][j] = min(dp[i][j], dp[i + 1][j - 1] + match(s[i], s[j]));
            for (int p = i + 1; p <= j; p += 2) {
                dp[i][j] = min(dp[i][j], dp[i][p] + dp[p + 1][j]);
            }
        }
    }
    cout << dp[1][n] << '\n';
    /*for (int i = 1; i <= n; ++i) {
        for (int j = 1; j <= n; ++j) {
            cout << dp[i][j] << ' ';
        }
        cout << '\n';
    }*/
    return 0;
}

编辑:
巨蟒来了:)
s = input()
n = len(s)
inf = 0x3f3f3f3f

def match(x, y):
    if x == '(' and y == ')':
        return 0
    if x == '[' and y == ']':
        return 0
    if (x == ')' or x == ']') and (y == '(' or y == '['):
        return 2
    return 1

# dp[i][j] = min. cost for balancing a[i], a[i + 1], ..., a[j]
dp = [[inf for j in range(n)] for i in range(n)]

for i in range(n - 1):
    dp[i][i + 1] = match(s[i], s[i + 1])

for k in range(3, n, 2):
    i = 0
    while i + k < n:
        j = i + k
        dp[i][j] = min(dp[i][j], dp[i + 1][j - 1] + match(s[i], s[j]))
        for p in range(i + 1, j, 2):
            dp[i][j] = min(dp[i][j], dp[i][p] + dp[p + 1][j])
        i += 1

print(dp[0][n - 1])
#for i in range(n):
#    for j in range(n):
#        print(dp[i][j], end = ' ')
#    print()

关于string - 翻转算法,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/40504845/

10-13 05:00