我试图从轮廓图像中提取平均像素值(R,G,B)。但是,我的问题是当我应用下面的代码时,观察到一些奇怪的值。
int main(){
cv::Mat star = imread("C:\\Users\\PC\\Desktop\\star\\starcircle.png");
cv::Mat mask = cv::Mat::zeros(star.rows, star.cols, CV_8UC1);
cv::Mat frame;
double b, g, r = 0.0;
cv::imshow("Original", star);
cv::cvtColor(star, frame, CV_BGR2HSV);
cv::inRange(frame, cv::Scalar(29, 220, 220), cv::Scalar(30, 255, 255), mask);
cv::imshow("mask", mask);
cv::Mat result = cv::Mat(star.rows, star.cols, CV_8UC1, star.type());
result.setTo(cv::Scalar(0, 0, 0));
star.copyTo(result, mask);
cv::Scalar temp = mean(mask);
cout << "avg_R: " << temp[2] << " \n"; // red value
cout << "avg_G: " << temp[1] << " \n"; // green value
cout << "avg_B: " << temp[0] << " \n\n"; // blue value
cv::imshow("result", result);
cv::waitKey(-1);
return 0;
}
我得到了正确的图像,如下所示。
我只想读取黄色部分的像素值,而不要读取蒙版外部的像素值。
我还有另一个代码可以读取黄色部分的像素值,但结果却相同。
int main(){
cv::Mat star = imread("C:\\Users\\PC\\Desktop\\star\\starcircle.png");
cv::Mat mask = cv::Mat::zeros(star.rows, star.cols, CV_8UC1);
cv::Mat frame;
double b, g, r = 0.0;
cv::imshow("Original", star);
cv::cvtColor(star, frame, CV_BGR2HSV);
cv::inRange(frame, cv::Scalar(29, 220, 220), cv::Scalar(30, 255, 255), mask);
cv::imshow("mask", mask);
cv::Mat result = cv::Mat(star.rows, star.cols, CV_8UC1, star.type());
result.setTo(cv::Scalar(0, 0, 0));
star.copyTo(result, mask);
int hei = star.rows;
int wid = star.cols;
int corow = hei * wid;
double b, g, r = 0.0;
for (int x = 0; x < hei; x++) {
for (int y = 0; y < wid; y++) {
if (mask.at<unsigned char>(x, y) > 0) {
b += result.at<Vec3b>(x, y)[0];
g += result.at<Vec3b>(x, y)[1];
r += result.at<Vec3b>(x, y)[2];
}
else {
}
}
}
cout << "$$ Red(R), Green(G), Blue(B) $$" << " \n\n";
cout << "avg_R: " << r / corow << " \n"; // red value
cout << "avg_G: " << g / corow << " \n"; // green value
cout << "avg_B: " << b / corow << " \n\n"; // blue value
}
请帮助我修改错误。
先感谢您。
最佳答案
一些东西:
Mat
类型至少令人困惑。为变量使用适当的名称,并尽可能使用Mat_<T>
(我会一直说)。 cv::mean
cv::waitKey()
才能实际看到自己的cv::imshow
检查代码:
#include <opencv2\opencv.hpp>
int main()
{
cv::Mat3b star = cv::imread("path/to/image");
cv::imshow("Original", star);
cv::Mat3b hsv;
cv::cvtColor(star, hsv, cv::COLOR_BGR2HSV);
cv::Mat1b mask;
cv::inRange(hsv, cv::Scalar(29, 220, 220), cv::Scalar(30, 255, 255), mask);
cv::imshow("mask", mask);
// Change to 'false' to see how to use the 'cv::mask' approach
if (true)
{
double blue, green, red = 0.0;
int counter = 0;
for (int r = 0; r < star.rows; r++)
{
for (int c = 0; c < star.cols; c++)
{
if (mask(r, c) > 0)
{
++counter;
blue += star(r, c)[0];
green += star(r, c)[1];
red += star(r, c)[2];
}
}
}
// Avoid division by 0
if (counter > 0)
{
blue /= counter;
green /= counter;
red /= counter;
}
std::cout << "$$ Red(R), Green(G), Blue(B) $$" << " \n\n";
std::cout << "avg_R: " << red << " \n";
std::cout << "avg_G: " << green << " \n";
std::cout << "avg_B: " << blue << " \n\n";
}
else
{
cv::Scalar mean_value = cv::mean(star, mask);
double blue = mean_value[0];
double green = mean_value[1];
double red = mean_value[2];
std::cout << "$$ Red(R), Green(G), Blue(B) $$" << " \n\n";
std::cout << "avg_R: " << red << " \n"; // red value
std::cout << "avg_G: " << green << " \n"; // green value
std::cout << "avg_B: " << blue << " \n\n"; // blue value
}
cv::waitKey();
}