如何从适合的GridSearchCV中提取最佳管道,以便将其传递给cross_val_predict

直接传递fit GridSearchCV对象会使cross_val_predict再次运行整个网格搜索,我只想让最好的管道接受cross_val_predict评估。

我的独立代码如下:

from sklearn.datasets import fetch_20newsgroups
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.svm import SVC
from sklearn.multiclass import OneVsRestClassifier
from sklearn.pipeline import Pipeline
from sklearn.grid_search import GridSearchCV
from sklearn.model_selection import cross_val_predict
from sklearn.model_selection import StratifiedKFold
from sklearn import metrics

# fetch data data
newsgroups = fetch_20newsgroups(remove=('headers', 'footers', 'quotes'), categories=['comp.graphics', 'rec.sport.baseball', 'sci.med'])
X = newsgroups.data
y = newsgroups.target

# setup and run GridSearchCV
wordvect = TfidfVectorizer(analyzer='word', lowercase=True)
classifier = OneVsRestClassifier(SVC(kernel='linear', class_weight='balanced'))
pipeline = Pipeline([('vect', wordvect), ('classifier', classifier)])
scoring = 'f1_weighted'
parameters = {
            'vect__min_df': [1, 2],
            'vect__max_df': [0.8, 0.9],
            'classifier__estimator__C': [0.1, 1, 10]
            }
gs_clf = GridSearchCV(pipeline, parameters, n_jobs=8, scoring=scoring, verbose=1)
gs_clf = gs_clf.fit(X, y)

### outputs: Fitting 3 folds for each of 12 candidates, totalling 36 fits

# manually extract the best models from the grid search to re-build the pipeline
best_clf = gs_clf.best_estimator_.named_steps['classifier']
best_vectorizer = gs_clf.best_estimator_.named_steps['vect']
best_pipeline = Pipeline([('best_vectorizer', best_vectorizer), ('classifier', best_clf)])

# passing gs_clf here would run the grind search again inside cross_val_predict
y_predicted = cross_val_predict(pipeline, X, y)
print(metrics.classification_report(y, y_predicted, digits=3))


我目前正在做的是从best_estimator_手动重新构建管道。但是我的管道通常具有更多的步骤,例如SVD或PCA,有时我会添加或删除步骤,然后重新运行网格搜索以探索数据。然后,在手动重新构建管道时,必须始终在下面重复此步骤,这容易出错。

有没有一种方法可以直接从适合的GridSearchCV中提取最佳管道,以便我可以将其传递给cross_val_predict

最佳答案

y_predicted = cross_val_predict(gs_clf.best_estimator_, X, y)


工作并返回:

Fitting 3 folds for each of 12 candidates, totalling 36 fits
[Parallel(n_jobs=4)]: Done  36 out of  36 | elapsed:   43.6s finished
             precision    recall  f1-score   support

          0      0.920     0.911     0.916       584
          1      0.894     0.943     0.918       597
          2      0.929     0.887     0.908       594

avg / total      0.914     0.914     0.914      1775


[编辑]当我再次尝试通过简单地传递pipeline(原始管道)的代码时,它返回了相同的输出(与传递best_pipeline一样)。因此,您有可能只使用Pipeline本身,但我并不是100%做到这一点。

08-25 07:45
查看更多