我有一个代码来计算两个矩阵之间的余弦相似度:
def cos_cdist_1(matrix, vector):
v = vector.reshape(1, -1)
return sp.distance.cdist(matrix, v, 'cosine').reshape(-1)
def cos_cdist_2(matrix1, matrix2):
return sp.distance.cdist(matrix1, matrix2, 'cosine').reshape(-1)
list1 = [[1,1,1],[1,2,1]]
list2 = [[1,1,1],[1,2,1]]
matrix1 = np.asarray(list1)
matrix2 = np.asarray(list2)
results = []
for vector in matrix2:
distance = cos_cdist_1(matrix1,vector)
distance = np.asarray(distance)
similarity = (1-distance).tolist()
results.append(similarity)
dist_all = cos_cdist_2(matrix1, matrix2)
results2 = []
for item in dist_all:
distance_result = np.asarray(item)
similarity_result = (1-distance_result).tolist()
results2.append(similarity_result)
results
是[[1.0000000000000002, 0.9428090415820635],
[0.9428090415820635, 1.0000000000000002]]
但是,
results2
是 [1.0000000000000002, 0.9428090415820635, 0.9428090415820635, 1.0000000000000002]
我的理想结果是
results
,这意味着结果包含相似值列表,但我想保留两个矩阵之间的计算而不是向量和矩阵,有什么好主意吗? 最佳答案
In [75]: import scipy.spatial as sp
In [76]: 1 - sp.distance.cdist(matrix1, matrix2, 'cosine')
Out[76]:
array([[ 1. , 0.94280904],
[ 0.94280904, 1. ]])
因此,您可以消除
for-loops
并将其全部替换为results2 = 1 - sp.distance.cdist(matrix1, matrix2, 'cosine')
关于python - 两个矩阵之间的余弦相似度计算,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/30152599/