为了获得乐趣和了解更多关于浮动的工作原理,我尝试创建一个函数,它接受两个单精度浮动,并将它们相加。
到目前为止,我所做的对于同一个符号数字来说是完美的,但是当这些数字有相反的符号时,它就会崩溃。我浏览了许多问题和网站(UAFHow do you add 8-bit floating point with different signsICLAdding 32 bit floating point numbers.How to add and subtract 16 bit floating point half precision numbers?How to subtract IEEE 754 numbers?thisthis),但提出减法的网站大多描述它有点像“基本相同,但减法相反”,我没有发现它有什么特别的帮助联合空军说
负尾数的处理方法是先转换成2的补码,然后执行加法。执行加法后,结果将转换回符号大小形式。
但我好像不知道怎么做。我发现了和这解释了什么是有符号量,以及如何在它和2的补码之间进行转换,所以我试着这样转换:

manz = manx + ( ( (many | 0x01000000) ^ 0x007FFFFF) + 1);

像这样:
manz = manx + ( ( (many | 0x01000000) ^ 0x007FFFFF) + 1);
manz = ( ((manz - 1) ^ 0x007FFFFF) & 0xFEFFFFFF);

但这两个都没用。
试着用其他资料描述的减法,我试着用不同的方法否定负数的尾数,比如:
manz = manx - many;
manz = manx + (many - (1<<23));
manz = manx + (many - (1<<24));
manz = manx + ( (many - (1<<23)) & 0x007FFFFF );
manz = manx + ( (many - (1<<23)) + 1);
manz = manx + ( (~many & 0x007FFFFF) + 1);
manz = manx + (~many + 1);
manz = manx + ( (many ^ 0x007FFFFF) + 1);
manz = manx + ( (many ^ 0x00FFFFFF) + 1);
manz = manx + ( (many ^ 0x003FFFFF) + 1);

这是根据符号处理加法的语句,它在尾数对齐之后:
expz = expy;
if(signx != signy) { // opp sign
  if(manx < many) {
    signz = signy;
    manz = many + ((manx ^ 0x007FFFFF) + 1);
  } else if(manx > many) {
    signz = signx;
    manz = manx - ((many ^ 0x007FFFFF) + 1);
  } else { // x == y
    signz = 0x00000000;
    expz  = 0x00000000;
    manz  = 0x00000000;
  }
} else {
  signz = signx;
  manz  = manx + many;
}

这是紧跟在它后面的代码,它在溢出时规范化数字,当它们有相同的符号时,它工作,但我不确定它的工作方式在减去时是否有意义:
if(manz & 0x01000000) {
  expz++;
  manz = (manz >> 1) + (manz & 0x1);
}
manz &= 0x007FFFFF;

通过测试值-3.34632F34.8532413F,我得到了应该0x427E071663.506920)的答案;通过测试值0x41FC0E2D31.506922,我得到了应该3.34632F-34.8532413F)的答案。
我可以通过改变在相减时规范化浮点数的方式来解决我的问题。
expz = expy;
if(signx != signy) { // opp sign
  if(manx < many) {
    signz = signy;
    manz  = many - manx;
  } else if(manx > many) {
    signz = signx;
    manz  = manx - many;
  } else { // x == y
    signz = 0x00000000;
    expz  = 0x00000000;
    manz  = 0x00000000;
  }
  // Normalize subtraction
  while((manz & 0x00800000) == 0 && manz) {
      manz <<= 1;
      expz--;
  }
} else {
  signz = signx;
  manz  = manx + many;
  // Normalize addition
  if(manz & 0x01000000) {
    expz++;
    manz = (manz >> 1) + ( (x & 0x2) ? (x & 0x1) : 0 ); // round even
  }
}
manz &= 0x007FFFFF;

最佳答案

如何添加两个符号相反的浮点数?
基本上你没有。
对于那些不能依赖“双补换行溢出”(例如浮点、大数库等)的数值类型,您总是会得到如下结果:

add_signed(v1, v2) {
    if( v1 < 0) {
        if( v2 < 0) {
            // Both negative
            return -add_unsigned(-v1, -v2);
        } else {
            // Different sign, v1 is negative
            return subtract_unsigned(v2, -v1);
        }
    } else {
        if( v2 < 0) {
            // Different sign, v2 is negative
            return subtract_unsigned(v1, -v2);
        } else {
            // Both positive
            return add_unsigned(v1, v2);
        }
    }
 }

subtract_signed(v1, v2) {
    return add_signed(v1, -v2);
}

add_unsigned(v1, v2) {
    // Here we know that v1 and v2 will never be negative, and
    //   we know that the result will never be negative
    ...
}

subtract_unsigned(v1, v2) {
    if(v1 < v2) {
        return -subtract_unsigned(v2, v1);
    }
    // Here we know that v1 and v2 will never be negative, and
    //   we know that the result will never be negative
    ...
}

换言之,所有实际的加法和所有实际的减法都是用无符号(“永不为负”)数字来实现的。
仅添加32位浮点模拟的更完整示例(在C语言中,未经测试且可能有错误,可能或可能不适用于非规范化,不支持“NaN/S”或无穷大,不支持溢出或下溢,不支持“舍入前左移尾数以减少精度损失”,也不支持不同的舍入模式,而不是“舍入”朝向零“):
#define SIGN_FLAG      0x80000000U
#define EXPONENT_MASK  0x7F800000U
#define MANTISSA_MASK  0x007FFFFFU
#define IMPLIED_BIT    0x00800000U
#define OVERFLOW_BIT   0x01000000U
#define EXPONENT_ONE   0x00800000U

uint32_t add_signed(uint32_t v1, uint32_t v2) {
    if( (v1 & SIGN_FLAG) != 0) {
        if( (v2 & SIGN_FLAG) != 0) {
            // Both negative
            return SIGN_FLAG | add_unsigned(v1 & ~SIGN_FLAG, v2 & ~SIGN_FLAG);
        } else {
            // Different sign, v1 is negative
            return subtract_unsigned(v2, v1 & ~SIGN_FLAG);
        }
    } else {
        if( (v2 & SIGN_FLAG) != 0) {
            // Different sign, v2 is negative
            return subtract_unsigned(v1, v2 & ~SIGN_FLAG);
        } else {
            // Both positive
            return add_unsigned(v1, v2);
        }
    }
 }

uint32_t subtract_signed(uint32_t v1, uint32_t v2) {
    return add_signed(v1, v2 ^ SIGN_FLAG);
}

uint32_t add_unsigned(uint32_t v1, uint32_t v2) {
    // Here we know that v1 and v2 will never be negative, and
    //   we know that the result will never be negative

    if(v1 < v2) {    // WARNING: Compares both exponents and mantissas
        return add_unsigned(v2, v1);
    }

    // Here we know the exponent of v1 is not smaller than the exponent of v2

    uint32_t m1 = (v1 & MANTISSA_MASK) | IMPLIED_BIT;
    uint32_t m2 = (v2 & MANTISSA_MASK) | IMPLIED_BIT;
    uint32_t exp2 = v2 & EXPONENT_MASK;
    uint32_t expr = v1 & EXPONENT_MASK;

    while(exp2 < expr) {
        m2 >>= 1;
        exp2 += EXPONENT_ONE;
    }
    uint32_t mr = m1+m2;
    if( (mr & OVERFLOW_BIT) != 0) {
        mr >> 1;
        expr += EXPONENT_ONE;
    }
    return expr | (mr & ~IMPLIED_BIT);
}

uint32_t subtract_unsigned(uint32_t v1, uint32_t v2) {
    if(v1 == v2) {
        return 0;
    }
    if(v1 < v2) {
        return SIGN_FLAG ^ subtract_unsigned(v2, v1);
    }

    // Here we know the exponent of v1 is not smaller than the exponent of v2,
    //  and that (if exponents are equal) the mantissa of v1 is larger
    //  than the mantissa of v2; and therefore the result will be
    //  positive

    uint32_t m1 = (v1 & MANTISSA_MASK) | IMPLIED_BIT;
    uint32_t m2 = (v2 & MANTISSA_MASK) | IMPLIED_BIT;
    uint32_t exp2 = v2 & EXPONENT_MASK;
    uint32_t expr = v1 & EXPONENT_MASK;

    while(exp2 < expr) {
        m2 >>= 1;
        exp2 += EXPONENT_ONE;
    }
    uint32_t mr = m1-m2;
    while( (mr & IMPLIED_BIT) == 0) {
        mr <<= 1;
        expr -= EXPONENT_ONE;
    }
    return expr | (mr & ~IMPLIED_BIT);
}

关于c - 如何将两个具有相反符号的浮点数相加?,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/58384951/

10-13 08:12
查看更多