我有运行Spark2(v2.2)的Hortonworks HDP 2.6.3。我的测试用例非常简单:
但是,由于NumberFormatException,我无法从Spark获取数据。
这是我的测试用例:
su-spark -c'/usr/hdp/2.6.3.0-235/spark2/sbin/start-thriftserver.sh --master yarn-client --executor-memory 512m --hiveconf hive.server2.thrift.port = 10016 '
su-spark -c'pyspark'
df = sqlContext.read.format(“jdbc”)。options(driver =“org.apache.hive.jdbc.HiveDriver”,url =“jdbc:hive2:// localhost:10016 / default”,dbtable =“test1” ,user =“hive”,password =“hive”)。load()
df.select(“*”)。show()
id
列有关,因此我更改为:df.select(“desc”)。show()您能否帮助我理解为什么以及如何通过Spark获取行?
更新1
我在两种情况下都遵循@Achyuth的建议,但它们仍然无法正常工作。
案例1
直线:
create table test4 (id String, desc String);
insert into table test4 values ("1","aa"),("2","bb");
select * from test4;
Pyspark:
>>> df = sqlContext.read.format("jdbc").options(driver="org.apache.hive.jdbc.HiveDriver", url="jdbc:hive2://localhost:10016/default", dbtable="test4",user="hive", password="hive").option("fetchsize", "10").load()
>>> df.select("*").show()
+---+----+
| id|desc|
+---+----+
| id|desc|
| id|desc|
+---+----+
由于某种原因,它在列名中返回了?!
案例2
直线:
create table test5 (id int, desc varchar(40)) STORED AS ORC;
insert into table test5 values (1,"aa"),(2,"bb");
select * from test5;
Pyspark:
还是一样的错误
Caused by: java.lang.NumberFormatException: For input string: "id"
更新2
创建一个表并通过Hive端口10000插入值,然后查询它。通过beeline可以正常工作
beeline> !connect jdbc:hive2://localhost:10000/default hive hive
Connecting to jdbc:hive2://localhost:10000/default
Connected to: Apache Hive (version 1.2.1000.2.5.3.0-37)
Driver: Hive JDBC (version 1.2.1000.2.5.3.0-37)
Transaction isolation: TRANSACTION_REPEATABLE_READ
0: jdbc:hive2://localhost:10000/default> create table test2 (id String, desc String) STORED AS ORC;
No rows affected (0.3 seconds)
0: jdbc:hive2://localhost:10000/default> insert into table test2 values ("1","aa"),("2","bb");
INFO : Session is already open
INFO : Dag name: insert into table tes..."1","aa"),("2","bb")(Stage-1)
INFO : Tez session was closed. Reopening...
INFO : Session re-established.
INFO :
INFO : Status: Running (Executing on YARN cluster with App id application_1514019042819_0006)
INFO : Map 1: -/-
INFO : Map 1: 0/1
INFO : Map 1: 0(+1)/1
INFO : Map 1: 1/1
INFO : Loading data to table default.test2 from webhdfs://demo.myapp.local:40070/apps/hive/warehouse/test2/.hive-staging_hive_2017-12-23_04-29-54_569_601147868480753216-3/-ext-10000
INFO : Table default.test2 stats: [numFiles=1, numRows=2, totalSize=317, rawDataSize=342]
No rows affected (15.414 seconds)
0: jdbc:hive2://localhost:10000/default> select * from table2;
Error: Error while compiling statement: FAILED: SemanticException [Error 10001]: Line 1:14 Table not found 'table2' (state=42S02,code=10001)
0: jdbc:hive2://localhost:10000/default> select * from test2;
+-----------+-------------+--+
| test2.id | test2.desc |
+-----------+-------------+--+
| 1 | aa |
| 2 | bb |
+-----------+-------------+--+
2 rows selected (0.364 seconds)
同样通过beeline,我可以使用Spark Thrift Server 10016做同样的事情,并且运行良好:
beeline> !connect jdbc:hive2://localhost:10016/default hive hive
Connecting to jdbc:hive2://localhost:10016/default
1: jdbc:hive2://localhost:10016/default> create table test3 (id String, desc String) STORED AS ORC;
+---------+--+
| Result |
+---------+--+
+---------+--+
No rows selected (1.234 seconds)
1: jdbc:hive2://localhost:10016/default> insert into table test3 values ("1","aa"),("2","bb");
+---------+--+
| Result |
+---------+--+
+---------+--+
No rows selected (9.111 seconds)
1: jdbc:hive2://localhost:10016/default> select * from test3;
+-----+-------+--+
| id | desc |
+-----+-------+--+
| 1 | aa |
| 2 | bb |
+-----+-------+--+
2 rows selected (3.387 seconds)
这意味着Spark和Thrift Server可以正常工作。但是使用
pyspark
我遇到了同样的问题,因为结果为空:>>> df = sqlContext.read.format("jdbc").options(driver="org.apache.hive.jdbc.HiveDriver", url="jdbc:hive2://localhost:10016/default", dbtable="test3",user="hive", password="hive").load()
>>> df.select("*").show()
+---+----+
| id|desc|
+---+----+
+---+----+
更新3
描述扩展测试3;
# Detailed Table Information | CatalogTable(
Table: `default`.`test3`
Owner: hive
Created: Sat Dec 23 04:37:14 PST 2017
Last Access: Wed Dec 31 16:00:00 PST 1969
Type: MANAGED
Schema: [`id` string, `desc` string]
Properties: [totalSize=620, numFiles=2, transient_lastDdlTime=1514032656, STATS_GENERATED_VIA_STATS_TASK=true]
Storage(Location: webhdfs://demo.myapp.local:40070/apps/hive/warehouse/test3, InputFormat: org.apache.hadoop.hive.ql.io.orc.OrcInputFormat, OutputFormat: org.apache.hadoop.hive.ql.io.orc.OrcOutputFormat, Serde: org.apache.hadoop.hive.ql.io.orc.OrcSerde, Properties: [serialization.format=1]))
显示创建表test3;
CREATE TABLE `test3`(`id` string, `desc` string)
ROW FORMAT SERDE 'org.apache.hadoop.hive.ql.io.orc.OrcSerde'
WITH SERDEPROPERTIES (
'serialization.format' = '1'
)
STORED AS
INPUTFORMAT 'org.apache.hadoop.hive.ql.io.orc.OrcInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.orc.OrcOutputFormat'
TBLPROPERTIES (
'totalSize' = '620',
'numFiles' = '2',
'transient_lastDdlTime' = '1514032656',
'STATS_GENERATED_VIA_STATS_TASK' = 'true'
)
su-spark -c'hdfs dfs -cat webhdfs://demo.myapp.local:40070 / apps / hive / warehouse / test3 / part-00000'
最佳答案
即使您正在创建具有特定数据类型的配置单元表,插入时表中的基础数据也将以字符串格式存储。
因此,当spark尝试读取数据时,它将使用metastore查找数据类型。它在配置单元元存储中以int形式出现,在文件中以字符串形式出现,并引发强制转换异常。
解决方案
将表创建为字符串,并从spark读取数据即可。
create table test1 (id String, desc String);
如果要保留数据类型,请指定创建表的文件格式(例如orc或parquet)之一,然后将其插入。您可以无异常(exception)地从Spark读取文件
create table test1 (id int, desc varchar(40) STORED AS ORC);
现在的问题是为什么 hive 能够阅读它?
hive 具有良好的 Actor 选择,而 Spark 却没有。
关于python - 查询Hive表时,Dataframe NumberFormatException上的Spark 2.2 Thrift服务器错误,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/47946449/