我正在尝试使用JAVA将SQL查询转换为Spark程序进行练习。我正在发布我正在使用的两个文件的架构。还有我要转换的查询
每个文件的架构:
Store_return的架构
root
|-- datetime: long (nullable = true)
|-- sr_returned_date_sk: long (nullable = true)
|-- sr_return_time_sk: long (nullable = true)
|-- sr_item_sk: long (nullable = true)
|-- sr_customer_sk: long (nullable = true)
|-- sr_cdemo_sk: long (nullable = true)
|-- sr_hdemo_sk: long (nullable = true)
|-- sr_addr_sk: long (nullable = true)
|-- sr_store_sk: long (nullable = true)
|-- sr_reason_sk: long (nullable = true)
|-- sr_ticket_number: long (nullable = true)
|-- sr_return_quantity: integer (nullable = true)
|-- sr_return_amt: double (nullable = true)
|-- sr_return_tax: double (nullable = true)
|-- sr_return_amt_inc_tax: double (nullable = true)
|-- sr_fee: double (nullable = true)
|-- sr_return_ship_cost: double (nullable = true)
|-- sr_refunded_cash: double (nullable = true)
|-- sr_reversed_charge: double (nullable = true)
|-- sr_store_credit: double (nullable = true)
|-- sr_net_loss: double (nullable = true)
date_dim的架构:
root
|-- d_date_sk: long (nullable = true)
|-- d_date_id: string (nullable = true)
|-- d_date: string (nullable = true)
|-- d_month_seq: integer (nullable = true)
|-- d_week_seq: integer (nullable = true)
|-- d_quarter_seq: integer (nullable = true)
|-- d_year: integer (nullable = true)
|-- d_dow: integer (nullable = true)
|-- d_moy: integer (nullable = true)
|-- d_dom: integer (nullable = true)
|-- d_qoy: integer (nullable = true)
|-- d_fy_year: integer (nullable = true)
|-- d_fy_quarter_seq: integer (nullable = true)
|-- d_fy_week_seq: integer (nullable = true)
|-- d_day_name: string (nullable = true)
|-- d_quarter_name: string (nullable = true)
|-- d_holiday: string (nullable = true)
|-- d_weekend: string (nullable = true)
|-- d_following_holiday: string (nullable = true)
|-- d_first_dom: integer (nullable = true)
|-- d_last_dom: integer (nullable = true)
|-- d_same_day_ly: integer (nullable = true)
|-- d_same_day_lq: integer (nullable = true)
|-- d_current_day: string (nullable = true)
|-- d_current_week: string (nullable = true)
|-- d_current_month: string (nullable = true)
|-- d_current_quarter: string (nullable = true)
|-- d_current_year: string (nullable = true)oss|
查询是
select sr_customer_sk as ctr_customer_sk
,sr_store_sk as ctr_store_sk
,sum(sr_return_quantity) as ctr_total_return
from store_returns
,date_dim
where sr_returned_date_sk = d_date_sk
and d_year = 2003
group by sr_customer_sk
,sr_store_sk
同样,我现在写了以下uptil
Dataset<Row> df = store_returns
.join(date_dim, store_returns.col("sr_returned_date_sk").equalTo(date_dim.col("d_date_sk")));
df.groupBy("sr_customer_sk","sr_store_sk").agg(sum("sr_return_quantity").alias("ctr_total_return"))
.select(col("sr_returned_date_sk").alias("ctr_customer_sk"),
col("sr_store_sk").alias("ctr_store_sk"))
.where(col("d_year").equalTo("2003").and(col("sr_returned_date_sk").equalTo(col("d_date_sk"))))
.groupBy("sr_customer_sk","sr_store_sk").agg(sum("sr_return_quantity").alias("ctr_total_return")).show();;
我收到以下错误
线程“ main”中的异常18/04/23 14:31:40 WARN Utils:由于计划太大,因此截断了计划的字符串表示形式。可以通过在SparkEnv.conf中设置'spark.debug.maxToStringFields'来调整此行为。
org.apache.spark.sql.AnalysisException:在给定输入列的情况下无法解析“
sr_returned_date_sk
”:[sr_customer_sk,sr_store_sk,ctr_total_return];'项目['sr_returned_date_sk AS ctr_customer_sk#309,sr_store_sk#8L AS ctr_store_sk#310L]
+-汇总[sr_customer_sk#4L,sr_store_sk#8L],[sr_customer_sk#4L,sr_store_sk#8L,sum(cast(cast(sr_return_quantity#11 as bigint))AS AS ctr_total_return#304L]
+-加入内部,(sr_returned_date_sk#1L = d_date_sk#43L)
- 关系[日期时间#0L,sr_returned_date_sk#1L,sr_return_time_sk#2L,sr_item_sk#3L,sr_customer_sk#4L,sr_cdemo_sk#5L,sr_hdemo_sk#6L,sr_addr_sk#7L,sr_store_sk#8L,sr_reason_sk#9L,sr_ticket_number#10L,sr_return_quantity# 11,sr_return_amt#12,sr_return_tax#13,sr_return_amt_inc_tax#14,sr_fee#15,sr_return_ship_cost#16,sr_refunded_cash#17,sr_reversed_charge#18,sr_store_credit#19,sr_net_loss
+-关系[d_date_sk#43L,d_date_id#44,d_date#45,d_month_seq#46,d_week_seq#47,d_quarter_seq#48,d_year#49,d_dow#50,d_moy#51,d_dom#52,d_qoy#53,d_fy_year# 54,d_fy_quarter_seq#55,d_fy_week_seq#56,d_day_name#57,d_quarter_name#58,d_holiday#59,d_weekend#60,d_following_holiday#61,d_first_dom#62,d_last_dom#63,d_same_day_day_ly_d_d,64 ... 4个其他字段]木地板
最佳答案
df.groupBy("sr_customer_sk","sr_store_sk").agg(sum("sr_return_quantity").alias("ctr_total_return"))
这将导致具有3列sr_customer_sk
,sr_store_sk
,ctr_total_return
的数据框,由于数据框没有select("sr_returned_date_sk")
,因此在sr_returned_date_sk
上将不起作用。
尝试使用:
Dataset<Row> df = store_returns
.join(date_dim, store_returns.col("sr_returned_date_sk").equalTo(date_dim.col("d_date_sk")))
.where(col("d_year").equalTo("2003"));
df.groupBy("sr_customer_sk","sr_store_sk").agg(sum("sr_return_quantity").alias("ctr_total_return"))
.select(col("sr_customer_sk").alias("ctr_customer_sk"),
col("sr_store_sk").alias("ctr_store_sk"),col("ctr_total_return"))