对于我的实验,我使用KNN对一些数据集进行分类(为重现性共享here)。以下是我的源代码。

import numpy as np
from numpy import genfromtxt
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt




types = {
        "Data_G": ["datag_s.csv", "datag_m.csv"],
        "Data_V": ["datav_s.csv", "datav_m.csv"],
        "Data_C": ["datac_s.csv", "datac_m.csv"],
        "Data_R": ["datar_s.csv", "datar_m.csv"]
        }

dataset = None
ground_truth = None

for idx, csv_list in types.items():
    for csv_f in csv_list:

        col_time,col_window = np.loadtxt(csv_f,delimiter=',').T
        trailing_window = col_window[:-1] # "past" values at a given index
        leading_window  = col_window[1:]  # "current values at a given index
        decreasing_inds = np.where(leading_window < trailing_window)[0]
        beta_value = leading_window[decreasing_inds]/trailing_window[decreasing_inds]
        quotient_times = col_time[decreasing_inds]

        my_data = genfromtxt(csv_f, delimiter=',')
        my_data = my_data[:,1]
        my_data = my_data[:int(my_data.shape[0]-my_data.shape[0]%200)].reshape(-1, 200)
        labels = np.full(1, idx)

        if dataset is None:
            dataset = beta_value.reshape(1,-1)[:,:15]
        else:
            dataset = np.concatenate((dataset,beta_value.reshape(1,-1)[:,:15]))

        if ground_truth is None:
            ground_truth = labels
        else:
            ground_truth = np.concatenate((ground_truth,labels))



X_train, X_test, y_train, y_test = train_test_split(dataset, ground_truth, test_size=0.25, random_state=42)

knn_classifier = KNeighborsClassifier(n_neighbors=3, weights='distance', algorithm='auto', leaf_size=300, p=2, metric='minkowski')
knn_classifier.fit(X_train, y_train)


当我执行以下操作时

plot_data=dataset.transpose()
plt.plot(plot_data)


它产生以下图。

python - 如何将多个numpy数组值添加到图例?-LMLPHP

我将图例添加到情节中,如下所示:

plt.plot(plot_data, label=idx)
plt.legend()


python - 如何将多个numpy数组值添加到图例?-LMLPHP

但是,可以看到,它用Data_R替换了所有图例。我在这里做错了什么?

最佳答案

在回答这个问题之前,我要说的一件事是,在遍历字典时,我始终会保持谨慎。在Python 3.6之前,不对字典进行排序,因此,如果需要保证字典中的顺序,则应使用OrderedDict。如果您运行的是Python3.6 +,则无需担心。无论如何...

在for循环for idx, csv_list in types.items():之后,我们将始终具有该idx = "Data_R"(假设您的字典已排序)。

因此,使用plt.plot(plot_data, label=idx)进行绘制时,所有线条的标签都将设置为"Data_R"

相反,您应该遍历各行,并一次向其中添加标签。

for i, key in enumerate(types.keys()):
    plt.plot(plot_data[:, 2*i], label=key)
    plt.plot(plot_data[:, 2*i+1], label=key)

plt.legend()

10-08 06:17
查看更多