我正在尝试对包含图像的数据集进行主成分分析,但每当我想从sklearn.discovery模块应用pca.transform时,我都会不断收到此错误:*attributeerError:'pca'对象没有“mean”*属性。我知道这个错误是什么意思,但我不知道该怎么纠正它。我想你们中有些人知道如何解决这个问题。
谢谢你的帮助
我的代码:
from sklearn import svm
import numpy as np
import glob
import os
from PIL import Image
from sklearn.decomposition import PCA
image_dir1 = "C:\Users\private\Desktop\K FOLDER\private\train"
image_dir2 = "C:\Users\private\Desktop\K FOLDER\private\test1"
Standard_size = (300,200)
pca = PCA(n_components = 10)
file_open = lambda x,y: glob.glob(os.path.join(x,y))
def matrix_image(image_path):
"opens image and converts it to a m*n matrix"
image = Image.open(image_path)
print("changing size from %s to %s" % (str(image.size), str(Standard_size)))
image = image.resize(Standard_size)
image = list(image.getdata())
image = map(list,image)
image = np.array(image)
return image
def flatten_image(image):
"""
takes in a n*m numpy array and flattens it to
an array of the size (1,m*n)
"""
s = image.shape[0] * image.shape[1]
image_wide = image.reshape(1,s)
return image_wide[0]
if __name__ == "__main__":
train_images = file_open(image_dir1,"*.jpg")
test_images = file_open(image_dir2,"*.jpg")
train_set = []
test_set = []
"Loop over all images in files and modify them"
train_set = [flatten_image(matrix_image(image)) for image in train_images]
test_set = [flatten_image(matrix_image(image)) for image in test_images]
train_set = np.array(train_set)
test_set = np.array(test_set)
train_set = pca.fit_transform(train_set) "line where error occurs"
test_set = pca.fit_transform(test_set)
完全回溯:
Traceback (most recent call last):
File "C:\Users\Private\workspace\final_submission\src\d.py", line 54, in <module>
train_set = pca.transform(train_set)
File "C:\Python27\lib\site-packages\sklearn\decomposition\pca.py", line 298, in transform
if self.mean_ is not None:
AttributeError: 'PCA' object has no attribute 'mean_'
Eddi1:
所以在转换模型之前,我试着去适应它,现在我得到了一个更奇怪的错误。我查了一下,它涉及到f2py,一个将fortran移植到python的模块,它是numpy库的一部分。
File "C:\Users\Private\workspace\final_submission\src\d.py", line 54, in <module>
pca.fit(train_set)
File "C:\Python27\lib\site-packages\sklearn\decomposition\pca.py", line 200, in fit
self._fit(X)
File "C:\Python27\lib\site-packages\sklearn\decomposition\pca.py", line 249, in _fit
U, S, V = linalg.svd(X, full_matrices=False)
File "C:\Python27\lib\site-packages\scipy\linalg\decomp_svd.py", line 100, in svd
full_matrices=full_matrices, overwrite_a = overwrite_a)
ValueError: failed to create intent(cache|hide)|optional array-- must have defined dimensions but got (0,)
编辑2:
所以我已经检查了我的火车组和数据组是否包含任何数据,但没有。
我已经检查了我的图像目录,它们包含正确的位置(为了清晰起见,我通过查看实际文件、查看其中一个图像的属性并复制位置来获取它们)。错误应该在别的地方。
最佳答案
在转换之前,您应该调整模型:
train_set = np.array(train_set)
test_set = np.array(test_set)
pca.fit(train_set)
pca.fit(test_set)
train_set = pca.transform(train_set) "line where error occurs"
test_set = pca.transform(test_set)
编辑
第二个错误表明您的
train_set
为空。使用此代码可以很容易地复制:train_set = np.array([[]])
pca.fit(train_set)
我认为有一个问题在函数中。我可能错了,但这一行会提高
flatten_image
image.wide = image.reshape(1,s)
可替换为:
image_wide = image.reshape(1,s)
return image_wide[0]
这一行也有问题:
print("changing size from %s to %s" % str(image.size), str(Standard_size))
有关更多详细信息,请阅读http://docs.python.org/2/library/stdtypes.html#string-formatting-operations,但
AttributeError
。所以你需要这样做:print("changing size from %s to %s" % (str(image.size), str(Standard_size)))
另一个编辑
最后,将t
values must be a tuple
之后的循环替换为:train_set = [flatten_image(matrix_image(image)) for image in train_images]
test_set = [flatten_image(matrix_image(image)) for image in test_images]
现在,您调用
"Loop over all images in files and modify them"
以便它在如下路径中查找文件:file_open
并得到空列表而不是文件名。关于python - 主成分分析不起作用,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/19410491/