我正在为几个频率绘制一些曲线Imax
vs Ciclo de servicio
。
为此,我对自变量Fs
和Vo
进行了两次嵌套扫描
尽管方程式稍微复杂一点,但我基本上是这样做的:
for Fs in np.linspace(70e3,200e3,4):
Vo_sweep = np.linspace(0,1,1000)
delta_I = [I_max(Vo) for Vo in Vo_sweep]
plt.plot(Vo_sweep,delta_I)
我对“ ciclo de servicio”为0.71的观点特别感兴趣。
如何在每条曲线的X轴上显示0.71的值以及蓝线的截距的Y值
最佳答案
如果要使用任意数据(无论功能和垂直线可能是什么)绘制拦截标记,我建议您计算交点(存在交点)。几个月前,我给出了一个可能对您有用的答案。您可以here检查它。
针对您的问题采用类似的解决方案:
import numpy as np
import matplotlib.pyplot as plt
def line_intersection(line1, line2):
xdiff = (line1[0][0] - line1[1][0], line2[0][0] - line2[1][0])
ydiff = (line1[0][1] - line1[1][1], line2[0][1] - line2[1][1]) #Typo was here
def det(a, b):
return a[0] * b[1] - a[1] * b[0]
div = det(xdiff, ydiff)
if div == 0:
return None
d = (det(*line1), det(*line2))
x = det(d, xdiff) / div
y = det(d, ydiff) / div
return x, y
def near(a, b, rtol=1e-5, atol=1e-8):
return abs(a - b) < (atol + rtol * abs(b))
def crosses(line1, line2):
"""
Return True if line segment line1 intersects line segment line2 and
line1 and line2 are not parallel.
"""
(x1,y1), (x2,y2) = line1
(u1,v1), (u2,v2) = line2
(a,b), (c,d) = (x2-x1, u1-u2), (y2-y1, v1-v2)
e, f = u1-x1, v1-y1
denom = float(a*d - b*c)
if near(denom, 0):
# parallel
return False
else:
t = (e*d - b*f)/denom
s = (a*f - e*c)/denom
# When 0<=t<=1 and 0<=s<=1 the point of intersection occurs within the
# line segments
return 0<=t<=1 and 0<=s<=1
for Fs in np.linspace(70e3,200e3,4):
Vo_sweep = np.linspace(0,1,1000)
delta_I = [i*Fs*np.log((i+1.1)/10) for i in range(len(Vo_sweep))] #[I_max(Vo) for Vo in Vo_sweep]
plt.plot(Vo_sweep,delta_I)
plt.vlines(0.71,min(delta_I),max(delta_I))
for Fs in np.linspace(70e3,200e3,4):
x = np.linspace(0,1,1000)
y = [i*Fs*np.log((i+1.1)/10) for i in range(len(Vo_sweep))]
for i in range(1,len(delta_I)):
p1 = np.array([x[i-1],y[i-1]],dtype='float')
p2 = np.array([x[i],y[i]],dtype='float')
k1 = np.array([0.71,min(delta_I)],dtype='float')
k2 = np.array([0.71,max(delta_I)],dtype='float')
if crosses((p2,p1),(k1,k2)):
seg = line_intersection((p2,p1),(k1,k2))
plt.scatter(seg[0],seg[1],c='red',s=90)
print(seg)
plt.ylim(min(delta_I),max(delta_I))
plt.xlim(0,1)
plt.show()
,结果如下:
如果您感兴趣的话,此特定配方还会打印截取坐标:
(0.70999999999999985, 211670610.06954533)
(0.70999999999999985, 342704797.25546497)
(0.70999999999999985, 473738984.44138455)
(0.70999999999999985, 604773171.62730408)
由于您没有提供数据,因此我不得不制作一个快速的综合数据,但是它应该像用
I_max()
定义中的delta_I
函数替换一样容易。