据 VentureBeat 报道,Google 人工智能研究部门在语音识别方面取得了新的进展,能从嘈杂的环境中分辨声音,准确率高达 92%。Google 人工智能研究部门在一篇名为《Fully Super vised Speaker Diarization》的论文中描述了这一新的 AI 系统,称它“能以一种更有效的方式识别声音”。
这套强大的 AI 系统涉及到 Speaker diarization 任务,需要标注出“谁”从“什么时候”到“什么时候”在说话,将语音样本分割成独特的、同构片段的过程。还能将新的演讲者发音与它以前从未遇到过的语音片段关联起来。
其核心算法已经开源可用。它实现了一个在线二值化错误率(DER),在NIST SRE 2000 CALLHOME基准上是7.6%,这对于实时应用来说已经足够低了,而谷歌之前使用的方法DER为8.8%。
谷歌研究人员的新方法是通过递归神经网络(RNN)模拟演讲者的嵌入(如词汇和短语的数学表示),递归神经网络是一种机器学习模型,它可以利用内部状态来处理输入序列。每个演讲者都从自己的RNN实例开始,该实例不断更新给定新嵌入的RNN状态,使系统能够学习发言者共享的高级知识。
研究人员在论文中写道:“由于该系统的所有组件都可以在监督环境下学习,所以在有高质量时间标记演讲者标签训练数据的情况下,它比无监督系统更受青睐。我们的系统受到全面监督,能够从带有时间戳的演讲者标签例子中学习。”
在未来的工作中,研究团队计划改进模型,使其能够集成上下文信息来执行脱机解码,他们希望这将进一步减少DER。研究人员还希望能够直接对声学特征进行建模,这样整个Speaker diarization系统就可以进行端到端训练。
来自:网易科技
相关链接
- http://kke4.blog.sohu.com/
http://69f3s.blog.sohu.com/
http://69ko.blog.sohu.com/
http://99l5u.blog.sohu.com/
http://gmy06.blog.sohu.com/
http://fs98u.blog.sohu.com/
http://66ddv.blog.sohu.com/
http://ccv66.blog.sohu.com/
http://ddv59.blog.sohu.com/
http://ddv63.blog.sohu.com/
http://ddv99.blog.sohu.com/
http://ddv987.blog.sohu.com/
http://ddv631.blog.sohu.com/
http://ddv996.blog.sohu.com/