我正在寻找一个允许以下操作的python库:
管理任务队列,并行运行任务(在一台或多台计算机上),允许任务可以在队列中生成其他任务,并且与UNIX和Windows兼容。

我读了一些有关Celery,RQ,SCoOP,用于任务管理器部分的多处理和Redis,用于消息代理部分的redis,rabbitMQ和ZMQ的文档,但是我真的不知道什么是最佳选择。

最佳答案

考虑Python multiprocessing library

这允许许多多处理选项,例如使用工作队列将多个进程作为一个工作池运行。它运行在一台服务器上,但是您可以实现一个连接器,该连接器在另一台服务器上执行工作(例如,通过SSH和远程运行python可执行文件)。

否则,我不知道可以跨服务器和跨平台工作的Python库。您可能需要一个容器化的应用程序-类似Kubernetes。

以下是我编写的一些示例代码,该代码将“任务ID”添加到表示可运行任务的队列中。然后可以由一组工作人员并行执行这些操作。

import time
from multiprocessing import Queue, Pool, Process
from Queue import Empty

# For writing to logs when using multiprocessing
import logging
from multiprocessing_logging import install_mp_handler()


class RuntimeHelper:
    """
    Wrapper to your "runtime" which can execute runs and is persistant within a worker thread.
    """
    def __init__(self):
        # Implement your own code here
        # Do some initialisation such as creating DB connections etc
        # Will be done once per worker when the worker starts
        pass

    def execute_run(self, run_id):
        # Implement your own code here to actually do the Run/Task.
        # In this case we just sleep for 30 secs instead of doing any real work
        time.sleep(30)
        pass


def worker(run_id_queue):
    """
    This function will be executed once by a Pool of Processes using multiprocessing.Pool
    :param queue: The thread-safe Queue of run_ids to use
    :return:
    """
    helper = RuntimeHelper()
    # Iterate runs until death
    logging.info("Starting")
    while True:
        try:
            run_id = run_id_queue.get_nowait()
            # A run_id=None is a signal to this process to die
            # An empty queue means: dont die, the queue is just empty for now and more work could be added soon
            if run_id is not None:
                logging.info("run_id={0}".format(run_id))
                helper.execute_run(run_id)
            else:
                logging.info("Kill signal received")
                return True
        except Empty:
            # Wait X seconds before checking for new work
            time.sleep(15)


if __name__ == '__main__':
    num_processes = 10
    check_interval_seconds = 15
    max_runtime_seconds = 60*15

    # ==========================================
    # INITIALISATION
    # ==========================================
    install_mp_handler() # Must be called before Pool is create

    queue = Queue()
    pool = Pool(num_processes, worker, (queue,))
    # don't forget the coma here  ^

    # ==========================================
    # LOOP
    # ==========================================

    logging.info('Starting to do work')

    # Naive wait-loop implementation
    max_iterations = max_runtime_seconds / check_interval_seconds
    for i in range(max_iterations):
        # Add work
        ready_runs = <Your code to get some runs>
        for ready_run in ready_runs:
            queue.put(ready_run.id)
        # Sleep while some of the runs are busy
        logging.info('Main thread sleeping {0} of {1}'.format(i, max_iterations))
        time.sleep(check_interval_seconds)

    # Empty the queue of work and send the kill signal (run_id = None)
    logging.info('Finishing up')
    while True:
        try:
            run_id = queue.get_nowait()
        except Empty:
            break
    for i in range(num_processes):
        queue.put(None)
    logging.info('Waiting for subprocesses')

    # Wait for the pool finish what it is busy with
    pool.close()
    pool.join()
    logging.info('Done')

10-07 16:34
查看更多