我有一个map(Object key,Text value,Context context),将一个tupleWritable与context.write()放在上下文中。和在reduce(Text键,Iterable值,Context上下文)中,我读取了tupleWritable,但是它是空的。
下面是我的代码。这让我感到困惑,任何帮助将不胜感激。

package boc.competition.team1;

import java.io.IOException;
import java.util.HashMap;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.Writable;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.join.TupleWritable;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.MultipleInputs;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;;

public class App
{
    public static class SCSTransMap extends Mapper<Object,Text,Text,TupleWritable>{
        private Text name = new Text();

        @Override
        public void map(Object key,Text value,Context context) throws IOException,InterruptedException{
                IntWritable i = new IntWritable(1);
                TupleWritable result = new TupleWritable(new IntWritable[] { i, new IntWritable(3)});
                System.out.println(result.get(0)+"====="+result.get(1));
//------here print the right value  1=====3
                context.write(name, result);
            }
        }
    }
    public static class reducer extends Reducer<Text,TupleWritable,Text,Text>{
        @Override
        public void reduce(Text key,Iterable<TupleWritable> values,Context context) throws IOException,InterruptedException{

            for(TupleWritable tuple:values) {
                System.out.println(tuple.get(0)+"====="+tuple.get(1));
// and here print 0=======0
            }

        }
    }

    public static void main( String[] args ) throws Exception
    {
        Configuration conf = new Configuration();

        Job job = Job.getInstance(conf,"team1Job");
        job.setJarByClass(App.class);
        job.setReducerClass(reducer.class);
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(TupleWritable.class);

        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(Text.class);

        MultipleInputs.addInputPath(job, new Path("C:\\Program Files\\PuTTY\\data\\scs\\Scs_Journal.csv"), TextInputFormat.class,SCSTransMap.class);
        FileOutputFormat.setOutputPath(job, new Path(OUT_PATH));

        System.exit(job.waitForCompletion(true)?0:1);
    }
}

最佳答案

我使用用户定义的可写类而不是tupleWritable类来传递map中的值以减少
这是用户定义可写的

package boc.competition.team1;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Writable;

public class IntPairWritable implements Writable {
        private IntWritable value1;
        private IntWritable value2;

        public IntPairWritable() {
            value1 = new IntWritable();
            value2 = new IntWritable();
        }

        public IntPairWritable(int value1, int value2) {
            this.value1 = new IntWritable(value1);
            this.value2 = new IntWritable(value2);
        }

        public int getInt1() {
            return value1.get();
        }

        public int getInt2() {
            return value2.get();
        }

        @Override
        public String toString() {
            return value1.toString()+" "+value2.toString();
        }

        @Override
        public void readFields(DataInput in) throws IOException {
            value1.readFields(in);
            value2.readFields(in);
        }

        @Override
        public void write(DataOutput out) throws IOException {
            value1.write(out);
            value2.write(out);
        }
}

关于hadoop - 为什么将元组可写传递给 reducer 后变为空,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/49651593/

10-12 07:25