我有两组不同的尺寸,我想在同一个直方图上绘制它们。然而,由于一组有 ~330,000 个值,而另一组有大约 ~16,000 个值,因此很难比较它们的频率直方图。我想绘制一个直方图比较两组,这样 y 轴是该 bin 中出现的百分比。我下面的代码与此接近,不同之处在于,不是将各个 bin 值总和为 1.0,而是直方图的积分总和为 1.0(这是因为 normed=True 参数)。

我怎样才能实现我的目标?我已经尝试过手动计算 % 频率并使用 plt.bar() 但不是覆盖图,而是并排比较图。我想保持 alpha=0.5 的效果

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

if plt.get_fignums():
    plt.close('all')

electric = pd.read_csv('electric.tsv', sep='\t')
gas = pd.read_csv('gas.tsv', sep='\t')

electric_df = pd.DataFrame(electric)
gas_df = pd.DataFrame(ngma_nonheat)

electric = electric_df['avg_daily']*30
gas = gas_df['avg_daily']*30


## Create a plot for NGMA gas usage
plt.figure("Usage Comparison")

weights_electric = np.ones_like(electric)/float(len(electric))
weights_gas = np.ones_like(gas)/float(len(gas))

bins=np.linspace(0, 200, num=50)

n, bins, rectangles = plt.hist(electric, bins, alpha=0.5, label='electric usage', normed=True, weights=weights_electric)
plt.hist(gas, bins, alpha=0.5, label='gas usage', normed=True, weights=weights_gas)

plt.legend(loc='upper right')
plt.xlabel('Average 30 day use in therms')
plt.ylabel('% of customers')
plt.title('NGMA Customer Usage Comparison')
plt.show()

最佳答案

在这种情况下,听起来您不想要 normed/density kwarg。您已经在使用 weights 。如果您将权重乘以 100 并忽略 normed=True 选项,您应该完全了解您的想法。

例如:

import matplotlib.pyplot as plt
import numpy as np
np.random.seed(1)

x = np.random.normal(5, 2, 10000)
y = np.random.normal(2, 1, 3000000)

xweights = 100 * np.ones_like(x) / x.size
yweights = 100 * np.ones_like(y) / y.size

fig, ax = plt.subplots()
ax.hist(x, weights=xweights, color='lightblue', alpha=0.5)
ax.hist(y, weights=yweights, color='salmon', alpha=0.5)

ax.set(title='Histogram Comparison', ylabel='% of Dataset in Bin')
ax.margins(0.05)
ax.set_ylim(bottom=0)
plt.show()

python - 在同一个图形上绘制两个直方图,并将它们的列总和为 100-LMLPHP

另一方面,您当前正在执行的操作( weightsnormed )将导致(注意 y 轴上的单位):
import matplotlib.pyplot as plt
import numpy as np
np.random.seed(1)

x = np.random.normal(5, 2, 10000)
y = np.random.normal(2, 1, 3000000)

xweights = 100 * np.ones_like(x) / x.size
yweights = 100 * np.ones_like(y) / y.size

fig, ax = plt.subplots()
ax.hist(x, weights=xweights, color='lightblue', alpha=0.5, normed=True)
ax.hist(y, weights=yweights, color='salmon', alpha=0.5, normed=True)

ax.set(title='Histogram Comparison', ylabel='% of Dataset in Bin')
ax.margins(0.05)
ax.set_ylim(bottom=0)
plt.show()

python - 在同一个图形上绘制两个直方图,并将它们的列总和为 100-LMLPHP

关于python - 在同一个图形上绘制两个直方图,并将它们的列总和为 100,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/35878064/

10-13 06:29