我有一个Postgres查询(通过SQLAlchemy),它使用复杂的条件选择匹配的行:
original_query = session.query(SomeTable).filter(*complex_filters)
我不知道查询是如何构造的,我只能访问生成的查询实例。
现在,我想使用这个“不透明”查询(这个问题中的黑框)来构造其他查询,从同一个表中使用完全相同的条件,但是在匹配的
original_query
行上有额外的逻辑。例如,顶部有SELECT DISTINCT(column)
:another_query = session.query(SomeTable.column).distinct().?select_from_query?(original_query)
或
SELECT SUM(tab_value) FROM (
SELECT tab.key AS tab_key, tab.value AS tab_value -- inner query, fixed
FROM tab
WHERE tab.product_id IN (1, 2) -- simplified; the inner query is quite complex
) AS tbl
WHERE tab_key = 'length';
或
SELECT tab_key, COUNT(*) FROM (
SELECT tab.key AS tab_key, tab.value AS tab_value
FROM tab
WHERE tab.product_id IN (1, 2)
) AS tbl
GROUP BY tab_key;
等。
如何在SQLAlchemy中干净地实现
?select_from_query?
部分?基本上,如何在SqlAlchemy中执行
SELECT dynamic FROM (SELECT fixed)
?动机:内部查询对象来自代码的不同部分。我无法控制它是如何构造的,并且希望避免对每个必须在其上运行的
SELECT
重复其特殊逻辑。我想重复使用这个查询,但是在上面添加额外的逻辑(如上面的例子所示)。 最佳答案
original_query
只是一个SQLAlchemy query API object,您可以对此应用其他筛选器和条件。查询API是生成的;每个Query()
实例操作都返回一个新的(不可变的)实例,并且您的起点(original_query
)不受影响。
这包括使用Query.distinct()
添加DISTINCT()
子句,Query.with_entities()
更改哪些列是查询的一部分,Query.values()
执行查询,但只返回特定的单列值。
使用.distinct(<column>).with_entities(<column>)
创建新的查询对象(可以进一步重用):
another_query = original_query.distinct(SomeTable.column).with_entities(SomeTable.column)
或者使用
.distinct(<column>).values(<column>)
在那里获得(column_value,)
元组结果的迭代器,然后:distinct_values = original_query.distinct(SomeTable.column).values(SomeTable.column)
请注意,
.values()
会立即执行查询,就像.all()
会立即执行查询一样,而.with_entities()
会返回一个只有一列的新Query
对象(然后.all()
或迭代或切片将执行并返回结果)。演示,使用一个人工的
Foo
模型(对sqlite执行以使其更易于快速演示):>>> from sqlalchemy import *
>>> from sqlalchemy.ext.declarative import declarative_base
>>> from sqlalchemy.orm import sessionmaker
>>> Base = declarative_base()
>>> class Foo(Base):
... __tablename__ = "foo"
... id = Column(Integer, primary_key=True)
... bar = Column(String)
... spam = Column(String)
...
>>> engine = create_engine('sqlite:///:memory:', echo=True)
>>> session = sessionmaker(bind=engine)()
>>> Base.metadata.create_all(engine)
2019-06-10 13:10:43,910 INFO sqlalchemy.engine.base.Engine PRAGMA table_info("foo")
2019-06-10 13:10:43,910 INFO sqlalchemy.engine.base.Engine ()
2019-06-10 13:10:43,911 INFO sqlalchemy.engine.base.Engine
CREATE TABLE foo (
id INTEGER NOT NULL,
bar VARCHAR,
spam VARCHAR,
PRIMARY KEY (id)
)
2019-06-10 13:10:43,911 INFO sqlalchemy.engine.base.Engine ()
2019-06-10 13:10:43,913 INFO sqlalchemy.engine.base.Engine COMMIT
>>> original_query = session.query(Foo).filter(Foo.id.between(17, 42))
>>> print(original_query) # show what SQL would be executed for this query
SELECT foo.id AS foo_id, foo.bar AS foo_bar, foo.spam AS foo_spam
FROM foo
WHERE foo.id BETWEEN ? AND ?
>>> another_query = original_query.distinct(Foo.bar).with_entities(Foo.bar)
>>> print(another_query) # print the SQL again, don't execute
SELECT DISTINCT foo.bar AS foo_bar
FROM foo
WHERE foo.id BETWEEN ? AND ?
>>> distinct_values = original_query.distinct(Foo.bar).values(Foo.bar) # executes!
2019-06-10 13:10:48,470 INFO sqlalchemy.engine.base.Engine SELECT DISTINCT foo.bar AS foo_bar
FROM foo
WHERE foo.id BETWEEN ? AND ?
2019-06-10 13:10:48,470 INFO sqlalchemy.engine.base.Engine (17, 42)
在上面的演示中,原始查询将选择带有
Foo
过滤器的特定BETWEEN
实例,但是添加.distinct(Foo.bar).values(Foo.bar)
之后将仅对DISTINCT foo.bar
列执行查询,但要使用相同的BETWEEN
过滤器类似地,通过使用.with_entities()
,我们得到了一个仅用于该单个列的新查询对象,但过滤器仍然是该新查询的一部分。您添加的示例的工作方式相同;实际上不需要在那里有子选择,因为相同的查询可以表示为:
SELECT sum(tab.value)
FROM tab
WHERE tab.product_id IN (1, 2) AND tab_key = 'length';
只需添加额外的过滤器,然后使用
.with_entities()
将所选列替换为SUM()
即可:summed_query = (
original_query
.filter(Tab.key == 'length') # add a filter
.with_entities(func.sum(Tab.value)
或者,就上述演示而言:
>>> print(original_query.filter(Foo.spam == 42).with_entities(func.sum(Foo.bar)))
SELECT sum(foo.bar) AS sum_1
FROM foo
WHERE foo.id BETWEEN ? AND ? AND foo.spam = ?
有子查询的用例(例如限制联接中特定表的结果),但这不是其中之一。
如果您确实需要子查询,那么查询API具有
Foo
(对于更简单的情况)和Query.from_self()
。例如,如果您只需要从原始查询中选择聚合行,并通过
Query.subselect()
对聚合值进行筛选,然后将结果与每个组的最高行id的另一个表连接,并进行进一步筛选,则需要一个子查询:summed_col = func.sum(SomeTable.some_column)
max_id = func.max(SomeTable.primary_key)
summed_results_by_eggs = (
original_query
.with_entities(max_id, summed_col) # only select highest id and the sum
.group_by(SomeTable.other_column) # per group
.having(summed_col > 10) # where the sum is high enough
.from_self(summed_col) # give us the summed value as a subselect
.join( # join these rows with another table
OtherTable,
OtherTable.foreign_key == max_id # using the highest id
)
.filter(OtherTable.some_column < 1000) # and filter some more
)
以上只会选择大于10的总和
HAVING
值,以及每组中最高的SomeTable.some_column
值。此查询必须使用子查询,因为您希望在与另一个表联接之前限制符合条件的SomeTable.id
行。为了演示这个,我添加了第二个表:
>>> from sqlalchemy.orm import relationship
>>> class Eggs(Base):
... __tablename__ = "eggs"
... id = Column(Integer, primary_key=True)
... foo_id = Column(Integer, ForeignKey(Foo.id))
... foo = relationship(Foo, backref="eggs")
...
>>> summed_col = func.sum(Foo.bar)
>>> max_id = func.max(Foo.id)
>>> print(
... original_query
... .with_entities(max_id, summed_col)
... .group_by(Foo.spam)
... .having(summed_col > 10)
... .from_self(summed_col)
... .join(Eggs, Eggs.foo_id==max_id)
... .filter(Eggs.id < 1000)
... )
SELECT anon_1.sum_2 AS sum_1
FROM (SELECT max(foo.id) AS max_1, sum(foo.bar) AS sum_2
FROM foo
WHERE foo.id BETWEEN ? AND ? GROUP BY foo.spam
HAVING sum(foo.bar) > ?) AS anon_1 JOIN eggs ON eggs.foo_id = anon_1.max_1
WHERE eggs.id < ?
SomeTable
方法接受在外部查询中使用的新实体,如果省略了这些实体,则会拉出所有列。在上面的代码中,我提取了summatedcolumn值;如果没有这个参数,也将选择Eggs
列。关于python - 如何在SqlAlchemy中没有JOIN的情况下嵌套SELECT?,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/56525884/