我遇到了某些模板类型要执行适当的函数模板重载的问题。下面显示了查看我正在遇到的内容所需的最小示例:
#include <cstdio>
#include <vector>
template<typename id_type>
struct B {
id_type ID;
std::vector<int> values;
};
template<typename id_type>
struct A {
id_type ID;
std::vector<struct B<id_type>> b_elems;
};
// forward declarations
namespace aSDG {
namespace meshing {
template<typename id_type> size_t byte_content(const struct B<id_type>& instance);
template<typename id_type> size_t serialize(const struct B<id_type>& instance, unsigned char* buffer, size_t start_idx = 0);
template<typename id_type> size_t deserialize(struct B<id_type>& instance, const unsigned char* buffer, size_t start_idx = 0);
template<typename id_type> size_t byte_content(const struct A<id_type>& instance);
template<typename id_type> size_t serialize(const struct A<id_type>& instance, unsigned char* buffer, size_t start_idx = 0);
template<typename id_type> size_t deserialize(struct A<id_type>& instance, const unsigned char* buffer, size_t start_idx = 0);
}
}
namespace aSDG {
namespace meshing {
// serialization for primitive types
template<typename T> size_t byte_content(const T& data){
return sizeof(T);
}
template<typename T> size_t serialize(const T& data, unsigned char* buffer, size_t start_idx = 0)
{
std::memcpy((void*)(buffer + start_idx), (void*)&data, sizeof(data));
return start_idx + sizeof(data);
}
template<typename T> size_t deserialize(T& data, const unsigned char* buffer, size_t start_idx = 0)
{
std::memcpy((void*)&data, (void*)(buffer + start_idx), sizeof(data));
return start_idx + sizeof(data);
}
// serialization for vector containers
template<typename T> size_t byte_content(const std::vector<T>& data){
// get number of bytes for the size variable
size_t num_req_bytes = sizeof(size_t);
// get the number of bytes for each element of the vector
for(size_t i = 0; i < data.size(); ++i){
num_req_bytes += byte_content(data[i]);
}// end for i
// return the total number of required bytes
return num_req_bytes;
}
template<typename T> size_t serialize(const std::vector<T>& data, unsigned char* buffer, size_t start_idx = 0)
{
// add the number of elements in the data
const size_t size_ = data.size();
start_idx = serialize(size_, buffer, start_idx);
// add the actual data elements
for(size_t i = 0; i < size_; ++i){
start_idx = serialize(data[i], buffer, start_idx);
}// end for i
// return the final index after adding all the data
return start_idx;
}
template<typename T> size_t deserialize(std::vector<T>& data, const unsigned char* buffer, size_t start_idx = 0)
{
// get the number of elements in the array
size_t size_ = 0;
start_idx = deserialize(size_, buffer, start_idx);
// resize the input array
data.resize(size_);
// fill the array with the data in the buffer
for(size_t i = 0; i < size_; ++i){
start_idx = deserialize(data[i], buffer, start_idx);
}// end for i
// return the number of bytes we are at in the array
return start_idx;
}
} // end namespace meshing
} // end namespace aSDG
namespace aSDG {
namespace meshing {
// serialization for B
template<typename id_type>
size_t byte_content(const struct B<id_type>& instance) {
return byte_content(instance.ID) + byte_content(instance.values);
}
template<typename id_type>
size_t serialize(const struct B<id_type>& instance, unsigned char* buffer, size_t start_idx){
start_idx = serialize(instance.ID, buffer, start_idx);
return serialize(instance.values, buffer, start_idx);
}
template<typename id_type>
size_t deserialize(struct B<id_type>& instance, const unsigned char* buffer, size_t start_idx){
start_idx = deserialize(instance.ID, buffer, start_idx);
return deserialize(instance.values, buffer, start_idx);
}
// serialization functions for A
template<typename id_type>
size_t byte_content(const struct A<id_type>& instance) {
return byte_content(instance.ID) + byte_content(instance.b_elems);
}
template<typename id_type>
size_t serialize(const struct A<id_type>& instance, unsigned char* buffer, size_t start_idx){
start_idx = serialize(instance.ID, buffer, start_idx);
return serialize(instance.b_elems, buffer, start_idx);
}
template<typename id_type>
size_t deserialize(struct A<id_type>& instance, const unsigned char* buffer, size_t start_idx){
start_idx = deserialize(instance.ID, buffer, start_idx);
return deserialize(instance.b_elems, buffer, start_idx);
}
} // end namespace meshing
} // end namespace aSDG
int main(int argc, const char * argv[]) {
struct A<size_t> a1, a2;
a1.b_elems.emplace_back();
a1.b_elems.emplace_back();
a1.b_elems.emplace_back();
a1.b_elems[0].ID = 5;
a1.b_elems[0].values.push_back(1);
// get the number of bytes to be serialized
size_t num_req_bytes = aSDG::meshing::byte_content(a1);
// allocate the buffer
std::vector<unsigned char> buf( num_req_bytes );
// serialize the data in a1
size_t serial_bytes = aSDG::meshing::serialize(a1, &buf[0]);
// deserialize data into a2
size_t deserial_bytes= aSDG::meshing::deserialize(a2, &buf[0]);
// check that the bytes match
printf("in_bytes = %zu vs. out_bytes = %zu\n", serial_bytes, deserial_bytes );
return 0;
}
在此示例中,我将序列化
A
类型的实例,而该序列化又需要对B
中包含的A
元素的 vector 进行序列化。 A
的所有序列化函数都会运行,这意味着将使用适当的定义调用byte_content
,serialize
和deserialize
的样式。但是,当程序递归到这些方法的通用std::vector
定义以序列化std::vector<struct B>
的A
数据成员时,它无法调用为B
定义的方法,而是为基本原语调用了序列化函数(在Java中定义了前三个)代码示例的顶部)。我看不到为什么在这种情况下未调用byte_content
的序列化方法(serialize
,deserialize
,B
),因为它们已定义。我怀疑我缺少一些有关如何选择函数模板重载的基本规则,但我确实不确定。任何见识将不胜感激。
编辑1
更准确地说,关键问题是当
A
序列化发生时,实际上它将在下面调用预期的方法template<typename id_type>
size_t aSDG::meshing::serialize(const struct A<id_type>& instance, unsigned char* buffer, size_t start_idx = 0){
start_idx = serialize(instance.ID, buffer, start_idx);
return serialize(instance.b_elems, buffer, start_idx);
}
问题是,当要序列化
b_elems
时,它首先使用std::vector
调用通用T = struct B
序列化方法template<typename T> size_t serialize(const std::vector<T>& data, unsigned char* buffer, size_t start_idx = 0)
{
// add the number of elements in the data
const size_t size_ = data.size();
start_idx = serialize(size_, buffer, start_idx);
// add the actual data elements
for(size_t i = 0; i < size_; ++i){
start_idx = serialize(data[i], buffer, start_idx);
}// end for i
// return the final index after adding all the data
return start_idx;
}
但是然后去做
serialize(data[i], buffer, start_idx)
时,该函数不会调用template<typename id_type>
size_t serialize(const struct B<id_type>& instance, unsigned char* buffer, size_t start_idx = 0){
start_idx = serialize(instance.ID, buffer, start_idx);
return serialize(instance.values, buffer, start_idx);
}
而是打电话
template<typename T> size_t serialize(const T& data, unsigned char* buffer, size_t start_idx = 0)
{
std::memcpy((void*)(buffer + start_idx), (void*)&data, sizeof(data));
return start_idx + sizeof(data);
}
我真的很困惑为什么会这样。
编辑2
添加@Evg推荐的前向声明后,该代码几乎可以按我期望的那样工作。现在唯一的问题是没有调用
byte_content
的B
专门化名称。可以通过将上述B
的特化定义替换为来验证这一点template<typename id_type>
size_t byte_content(const struct B<id_type>& instance) {
printf("B byte_content\n");
return byte_content(instance.ID) + byte_content(instance.values);
}
template<typename id_type>
size_t serialize(const struct B<id_type>& instance, unsigned char* buffer, size_t start_idx){
printf("B serialize\n");
start_idx = serialize(instance.ID, buffer, start_idx);
return serialize(instance.values, buffer, start_idx);
}
template<typename id_type>
size_t deserialize(struct B<id_type>& instance, const unsigned char* buffer, size_t start_idx){
printf("B deserialize\n");
start_idx = deserialize(instance.ID, buffer, start_idx);
return deserialize(instance.values, buffer, start_idx);
}
并证明“B byte_content”消息从未显示。现在也许我只是累了,没有看到一些错误,但是我看不到为什么,即使在前向声明之后,也没有调用
byte_content
的正确B
专门化名称。 最佳答案
注意:此答案指的是编辑之前的问题(无前向声明)。
在serialize(const std::vector<T>& data...)
内部,您使用了不合格的名称serialize
。编译器应确定要调用的serialize
。它将考虑功能1)在定义点可见,2)可以在实例化时由ADL找到。两次查找都将找不到serialize(const B<id_type>&...)
。
一种可能的解决方案是提出声明
template<typename id_type>
size_t byte_content(const B<id_type>&);
template<typename id_type>
size_t serialize(const B<id_type>&, unsigned char*, size_t = 0);
template<typename id_type>
size_t deserialize(B<id_type>&, const unsigned char*, size_t = 0);
一开始
关于c++ - 模板化函数重载未能在递归模板调用中被调用,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/56697699/