我试图最小化基本上像这样的功能:

python - SciPy的最小化根本没有迭代-LMLPHP

实际上,它具有两个自变量,但是由于x1 + x2 = 1,因此它们并不是真正独立的。

现在这是目标函数

def calculatePVar(w,covM):
    w = np.matrix(w)
    return (w*covM*w.T) [0,0]


wnere w是每种资产的权重的列表,而covM是熊猫的.cov()返回的协方差矩阵

这是优化函数的调用位置:

w0 = []
for sec in portList:
    w0.append(1/len(portList))

bnds = tuple((0,1)  for x in w0)
cons = ({'type': 'eq', 'fun': lambda x:  np.sum(x)-1.0})
res= minimize(calculatePVar, w0, args=nCov, method='SLSQP',constraints=cons, bounds=bnds)
weights = res.x


现在该函数有一个明显的最小值,但是最小值只会吐出初始值作为结果,并且确实会说“优化已成功终止”。有什么建议么?

优化结果:

python - SciPy的最小化根本没有迭代-LMLPHP

附言图片作为链接,因为我不符合要求!

最佳答案

您的代码中只有一些令人困惑的变量,因此我清除了这一点并简化了几行,现在最小化工作正常。但是,现在的问题是:结果是否正确?他们有道理吗?这是供您判断:

import numpy as np
from scipy.optimize import minimize

def f(w, cov_matrix):
    return (np.matrix(w) * cov_matrix * np.matrix(w).T)[0,0]

cov_matrix = np.array([[1, 2, 3],
                       [4, 5, 6],
                       [7, 8, 9]])
p    = [1, 2, 3]
w0   = [(1/len(p))  for e in p]
bnds = tuple((0,1)  for e in w0)
cons = ({'type': 'eq', 'fun': lambda w:  np.sum(w)-1.0})

res  = minimize(f, w0,
                args        = cov_matrix,
                method      = 'SLSQP',
                constraints = cons,
                bounds      = bnds)
weights = res.x
print(res)
print(weights)


更新:

根据您的评论,在我看来-也许-您的函数有多个最小值,这就是scipy.optimize.minimize被困在其中的原因。我建议使用scipy.optimize.basinhopping作为替代方案,这将使用随机步骤遍历函数的大部分最小值,并且仍然会很快。这是代码:

import numpy as np
from scipy.optimize import basinhopping


class MyBounds(object):
     def __init__(self, xmax=[1,1], xmin=[0,0] ):
         self.xmax = np.array(xmax)
         self.xmin = np.array(xmin)

     def __call__(self, **kwargs):
         x = kwargs["x_new"]
         tmax = bool(np.all(x <= self.xmax))
         tmin = bool(np.all(x >= self.xmin))
         return tmax and tmin

def f(w):
    global cov_matrix
    return (np.matrix(w) * cov_matrix * np.matrix(w).T)[0,0]

cov_matrix = np.array([[0.000244181, 0.000198035],
                       [0.000198035, 0.000545958]])

p    = ['ABEV3', 'BBDC4']
w0   = [(1/len(p))  for e in p]
bnds = tuple((0,1)  for e in w0)
cons = ({'type': 'eq', 'fun': lambda w:  np.sum(w)-1.0})

bnds = MyBounds()
minimizer_kwargs = {"method":"SLSQP", "constraints": cons}
res  = basinhopping(f, w0,
                    accept_test  = bnds)
weights = res.x
print(res)
print("weights: ", weights)


输出:

                        fun: 2.3907094432990195e-09
 lowest_optimization_result:       fun: 2.3907094432990195e-09
 hess_inv: array([[ 2699.43934183, -1184.79396719],
       [-1184.79396719,  1210.50404805]])
      jac: array([1.34548553e-06, 2.00122166e-06])
  message: 'Optimization terminated successfully.'
     nfev: 60
      nit: 6
     njev: 15
   status: 0
  success: True
        x: array([0.00179748, 0.00118076])
                    message: ['requested number of basinhopping iterations completed successfully']
      minimization_failures: 0
                       nfev: 6104
                        nit: 100
                       njev: 1526
                          x: array([0.00179748, 0.00118076])
weights:  [0.00179748 0.00118076]

关于python - SciPy的最小化根本没有迭代,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/55975812/

10-16 07:09