我已经从正在研究的挑战二进制文件中反转了以下算法:
def encrypt(plain):
l = len(plain)
a = 10
cipher = ""
for i in range(0, l):
if i + a < l - 1:
cipher += chr( xor(plain[i], plain[i+a]) )
else:
cipher += chr( xor(plain[i], plain[a]) )
if ord(plain[i]) % 2 == 0: a += 1 # even
else: a -= 1 # odd
return cipher
from binascii import hexlify
print hexlify(encrypt("this is a test string"))
实际上,它将每个字符与字符串中的另一个字符进行异或,偏移量为
a
。a
初始值是10
,当函数在字符串中的字符上迭代时,如果字符的值是偶数,则为a +=1
;如果字符的值是奇数,则为a -= 1
。我已经在脑子里想好了如何反转这个密码并检索纯文本,这需要使用递归函数来找出原始字符串中哪些字符偏移量是偶数/奇数。IE:考虑到XOR%2的属性,我们现在发现如果
cipher[0]
是奇数,那么plain[0]
或plain[10]
都是奇数,但不是两者都是类似地,如果cipher[0]
是偶数,那么plain[0]
和plain[10]
都是偶数,或者都是奇数从那里一个递归算法应该可以工作的其余部分。一旦我们知道明文中的哪些字符是偶数/奇数,就可以轻松地反转其余字符。我花了几个小时来解决这个问题,但现在我却不知所措。
我以前用过基本的递归算法,但从来没有用“分支”来解决类似的问题。
给定由该函数产生的
cipher
字符串,我们如何使用递归算法来确定原始纯字符串中每个字符的奇偶性?编辑:很抱歉,我只是想澄清一下,并且在回答一个评论时,在几个小时的挠头之后,我认为上面概述的递归策略将是解决这个问题的唯一方法。如果没有,我愿意接受任何提示/帮助来解决标题问题。
最佳答案
你可以用recursive backtracking来解决这个问题做一个假设,然后沿着这条路走,直到你解密了字符串或者你遇到了矛盾当遇到矛盾时,返回failure,调用函数将尝试下一种可能性。如果返回success,则将success返回给调用方。
很抱歉,但我忍不住要解决这个问题。我想到的是:
# Define constants for even/odd/notset so we can use them in a list of
# assumptions about parity.
even = 0
odd = 1
notset = 2
# Define success and failure so that success and failure can be passed
# as a result.
success = 1
failure = 0
def tryParity(i, cipher, a, parities, parityToSet):
newParities = list(parities)
for j, p in parityToSet:
try:
if parities[j] == notset:
newParities[j] = p
elif parities[j] != p:
# Failure due to contradiction.
return failure, []
except IndexError:
# If we get an IndexError then this can't be a valid set of values for the parity.
# Error caused by a bad value for "a".
return failure, []
# Update "a" based on parity of i
new_a = a+1 if newParities[i] == even else a-1
return findParities(i+1,cipher,new_a,newParities)
def findParities(i, cipher, a, parities):
# Start returning when you've reached the end of the cipher text.
# This is when success start bubbling back up through the call stack.
if i >= len(cipher):
return success, [parities] # list of parities
# o stands for the index of the other char that would have been XORed.
# "o" for "other"
o = i+a if i + a < len(cipher)-1 else a
result = None
resultParities = []
toTry = []
# Determine if cipher[index] is even or odd
if ord(cipher[i]) % 2 == 0:
# Try both even and both odd
toTry = (((i,even),(o,even)),
((i,odd),(o,odd)))
else:
# Try one or the other even, one or the other odd
toTry = (((i,odd),(o,even)),
((i,even),(o,odd)))
# Try first possiblity, if success add parities it came up with to result
resultA, resultParA = tryParity(i, cipher, a, parities, toTry[0])
if resultA == success:
result = success
resultParities.extend(resultParA)
# Try second possiblity, if success add parities it came up with to result
resultB, resultParB = tryParity(i, cipher, a, parities, toTry[1])
if resultB == success:
result = success
resultParities.extend(resultParB)
return result, resultParities
def decrypt(cipher):
a = 10
parities = list([notset for _ in range(len(cipher))])
# When done, possible parities will contain a list of lists,
# where the inner lists have the parity of each character in the cipher.
# Comes back with mutiple results because each
result, possibleParities = findParities(0,cipher,a,parities)
# A print for me to check that the parities that come back match the real parities
print(possibleParities)
print(list(map(lambda x: 0 if ord(x) % 2 == 0 else 1, "this is a test string")))
# Finally, armed with the parities, decrypt the cipher. I'll leave that to you.
# Maybe more recursion is needed
# test call
decrypt(encrypt("this is a test string"))
这似乎很有效,但我没有尝试任何其他输入。
这个解决方案只给你一半,我把字符的解密留给你了。他们也许可以一起做,但我想集中精力回答你提出的问题。我使用python 3是因为它是我安装的。
我也是这方面的初学者我建议你读一本彼得·诺维格的书谢谢你提出这个棘手的问题。