有一些功能可以将数据分为每小时(即24)或一年中的某一天(即365)。我有一个1999-2001年的3年数据集,其中有每小时的值。因此,总值为24 * 365 * 4 + 1 * 24 = 26304(1 * 24 = year年)。
当我运行该功能
result=ds.groupby('time.dayofyear').mean('time')
结果如下:
<xarray.DataArray 'precip' (dayofyear: 366, lat: 21, lon: 33)>
array([[[0. , 0. , 0. , ..., 0. ,
0. , 0. ],
[0. , 0. , 0. , ..., 0. ,
0. , 0. ],
[0. , 0. , 0. , ..., 0. ,
0. , 0. ],
...,
[0.00086806, 0.00065104, 0.00097656, ..., 0. ,
0. , 0. ],
[0.00141059, 0.00141059, 0.00130208, ..., 0. ,
0. , 0. ],
[0.00195312, 0.00141059, 0.00119358, ..., 0. ,
0. , 0. ]],
[[0. , 0. , 0. , ..., 0. ,
0. , 0. ],
[0. , 0. , 0. , ..., 0. ,
0. , 0. ],
[0. , 0. , 0. , ..., 0. ,
0. , 0. ],
...,]
Coordinates:
* lon (lon) float32 220.0 222.5 225.0 227.5 ... 292.5 295.0 297.5 300.0
* lat (lat) float32 20.0 22.0 24.0 26.0 28.0 ... 54.0 56.0 58.0 60.0
* dayofyear (dayofyear) int64 1 2 3 4 5 6 7 8 ... 360 361 362 363 364 365 366
如果我使用time.hour groupby函数:
result=ds.groupby('time.hour').mean('time')
<xarray.DataArray 'precip' (hour: 24, lat: 21, lon: 33)>
array([[[0. , 0. , 0. , ..., 0. ,
0. , 0. ],
[0. , 0. , 0. , ..., 0. ,
0. , 0. ],
[0. , 0. , 0. , ..., 0. ,
0. , 0. ],
...,
[0.00015682, 0.00022097, 0.00047759, ..., 0. ,
0. , 0. ],
[0.00033503, 0.00037779, 0.0004562 , ..., 0. ,
0. , 0. ],
[0.00044195, 0.00039918, 0.00039205, ..., 0. ,
0. , 0. ]],, dtype=float32)
Coordinates:
* lon (lon) float32 220.0 222.5 225.0 227.5 ... 292.5 295.0 297.5 300.0
* lat (lat) float32 20.0 22.0 24.0 26.0 28.0 ... 52.0 54.0 56.0 58.0 60.0
* hour (hour) int64 0 1 2 3 4 5 6 7 8 9 ... 14 15 16 17 18 19 20 21 22 23
如何对一年中的小时进行分组,从而为我提供一年中的每小时平均值,而不是一天。
需要函数给出结果为366 * 24 = 8784,其中平均值是使用日小时指数计算的。
最佳答案
我认为您要求的是question I answered earlier中的相同内容。简而言之,我认为目前xarray中最干净的方法是使用strftime
生成每个日期的带有“hourofyear”值的坐标,并在其上使用groupby
:
ds['hourofyear'] = xr.DataArray(ds.time.dt.strftime('%m-%d %H'), coords=ds.time.coords)
result = ds.groupby('hourofyear').mean('time')