我有一个m4.4xlarge(64 GB内存)EC2盒。我和熊猫跑得快。我收到以下内存错误。
我在运行约24小时后得到了此消息,这大约是完成任务所需要的时间,因此我不确定错误是否是由于RAM不足,磁盘内存不足而导致的,脚本执行结束时我执行了DF .to_csv()将大型DF写入磁盘或pandas / numpy内部内存限制?
raise(remote_exception(res, tb))
dask.async.MemoryError:
Traceback
---------
File "/home/ec2-user/anaconda2/lib/python2.7/site-packages/dask/async.py", line 267, in execute_task
result = _execute_task(task, data)
File "/home/ec2-user/anaconda2/lib/python2.7/site-packages/dask/async.py", line 248, in _execute_task
args2 = [_execute_task(a, cache) for a in args]
File "/home/ec2-user/anaconda2/lib/python2.7/site-packages/dask/async.py", line 249, in _execute_task
return func(*args2)
File "/home/ec2-user/anaconda2/lib/python2.7/site-packages/pandas/core/frame.py", line 4061, in apply
return self._apply_standard(f, axis, reduce=reduce)
File "/home/ec2-user/anaconda2/lib/python2.7/site-packages/pandas/core/frame.py", line 4179, in _apply_standard
result = result._convert(datetime=True, timedelta=True, copy=False)
File "/home/ec2-user/anaconda2/lib/python2.7/site-packages/pandas/core/generic.py", line 3004, in _convert
copy=copy)).__finalize__(self)
File "/home/ec2-user/anaconda2/lib/python2.7/site-packages/pandas/core/internals.py", line 2941, in convert
return self.apply('convert', **kwargs)
File "/home/ec2-user/anaconda2/lib/python2.7/site-packages/pandas/core/internals.py", line 2901, in apply
bm._consolidate_inplace()
File "/home/ec2-user/anaconda2/lib/python2.7/site-packages/pandas/core/internals.py", line 3278, in _consolidate_inplace
self.blocks = tuple(_consolidate(self.blocks))
File "/home/ec2-user/anaconda2/lib/python2.7/site-packages/pandas/core/internals.py", line 4269, in _consolidate
_can_consolidate=_can_consolidate)
File "/home/ec2-user/anaconda2/lib/python2.7/site-packages/pandas/core/internals.py", line 4289, in _merge_blocks
new_values = _vstack([b.values for b in blocks], dtype)
File "/home/ec2-user/anaconda2/lib/python2.7/site-packages/pandas/core/internals.py", line 4335, in _vstack
return np.vstack(to_stack)
File "/home/ec2-user/anaconda2/lib/python2.7/site-packages/numpy/core/shape_base.py", line 230, in vstack
return _nx.concatenate([atleast_2d(_m) for _m in tup], 0)
更新:
因此,根据MRocklin的答案提供了一些其他信息。
这是我执行流程的方式:
def dask_stats_calc(dfpath,v1,v2,v3...):
dfpath_ddf = dd.from_pandas(dfpath,npartitions=16,sort=False)
return dfpath_ddf.apply(calculate_stats,axis=1,args=(dfdaily,v1,v2,v3...)).compute(get=get).stack().reset_index(drop=True)
f_threaded = partial(dask_stats_calc,dfpath,v1,v2,v3...,multiprocessing.get)
f_threaded()
现在,
dfpath
是具有140万行的df,因此dfpath_ddf.apply()
运行超过140万行。整个
dfpath_ddf.apply()
完成后,就会出现df.to_csv()
,但是就像您说的那样,最好定期写入磁盘。现在的问题是,如何实现对每200k行的定期写入磁盘的操作?我想我可以将
dfpath_ddf
分解成200k块(或类似的东西)并按顺序运行吗? 最佳答案
单线程执行
有时,在等待写入磁盘上的单个文件时,任务会在RAM中累积。对于并行系统,使用这样的顺序输出本质上是棘手的。如果需要使用单个文件,那么我建议尝试使用相同的单线程计算,看看是否有区别。
with dask.set_options(get=dask.async.get_sync):
DF.to_csv('out.csv')
写入多个文件
另外(也是首选),您可以尝试写出许多CSV文件。这在计划中要容易得多,因为任务不必等到其前任完成后就可以写入磁盘并从RAM中删除自己。
DF.to_csv('out.*.csv')
例
因此,并行执行和写入的一种常见且相当可靠的方法是将您的计算与最后对
to_csv
的调用结合起来ddf = dd.from_pandas(df, npartitions=100)
ddf.apply(myfunc).to_csv('out.*.csv')
这会将您的数据帧分解为多个块,在每个块上调用函数,将该块写入磁盘,然后删除中间值,从而释放空间。