我具有以下格式的输入数据集:

+---+--------+----------+
| id|   refId| timestamp|
+---+--------+----------+
|  1|    null|1548944642|
|  1|29950529|1548937685|
|  2|27510720|1548944885|
|  2|27510720|1548943617|
+---+--------+----------+


需要使用以下转换逻辑添加新列session


如果refId is null,则会话值为true。
如果id and refId are unique,则会话值为true。
如果id and refId are not unique和`timestamp'大于上一行,则会话值为true。时间戳之间的差异也应大于60。


+---+--------+-------+----------+
| id|   refId|session| timestamp|
+---+--------+-------+----------+
|  1|    null|   true|1548944642|
|  1|29950529|   true|1548937685|
|  2|27510720|  false|1548943617|
|  2|27510720|   true|1548944885|
+---+--------+-------+----------+


我能够分别处理1和3条件,但不能处理第二个条件。


`data.withColumn(“ session”,functions.when(data.col(“ refId”)。isNull(),true));
3。


WindowSpec w = Window.partitionBy("id, refid").orderBy(timestampDS.col("timestamp"));
functions.coalesce(timestampDS.col("timestamp").cast("long").$minus(functions.lag("timestamp", 1).over(w).cast("long")), functions.lit(0));


我的问题是如何满足第二个条件并一起实施所有三个转换。

最佳答案

我想说使用Spark SQL可以降低复杂性并轻松实现结果

df.createOrReplaceTempView("test")

spark.sql("select id,refId,timestamp,case when refId is null and id is not null then 'true' when id is not null and refId is not null and rank=1 then 'true' else 'false' end as session from  (select id,refId,timestamp, rank() OVER (PARTITION BY id,refId ORDER BY timestamp DESC) as rank from test) c").show()


输出看起来像这样:

+---+--------+----------+-------+
| id|   refId| timestamp|session|
+---+--------+----------+-------+
|  1|    null|1548944642|   true|
|  1|29950529|1548937685|   true|
|  2|27510720|1548944885|   true|
|  2|27510720|1548943617|  false|
+---+--------+----------+-------+

关于java - Spark:具有数据框的复杂操作,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/54747913/

10-16 17:18
查看更多